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Analytical study of induced anisotropy in idealized 
granular materials 

L. ROTHENBURG* and R. J. BATHURST? 

Development of induced anisotropy during shear 
deformation of plane granular assemblies is inves- 
tigated by introducing statistical characteristics of 
fabric and contact forces. The introduced micro- 
structural parameters are explicitly related to the 
measure of deviatoric load by considering condi- 
tions of static equilibrium. Verification of the 
relationship between parameters of anisotropy, 
average forces and external loads is presented 
based on numerical simulation of tests on plane 
granular assemblies. The physical significance of 
introduced parameters of microstructure and their 
evolution during shear deformations is discussed. 
KEYWORDS: fabric/structure of soils; granular 
materials; shear strength; statistical analysis; stress 
analysis. 

Le dkveloppment de l’anisotropie induite pendant 
la dkformation de cisaillement d’assemblages plans 
granulaires est examin grlce & l’introduction de 
caracticristiques statistiques de la fabrique et des 
efforts de contact. Les paramktres microstruc- 
turaux introduits sont reks de facon explicite i la 
mesure du chargement dkviatorique en considkrant 
les conditions de I’kquilibre statique. La vkifica- 
tion de la relation entre les paramitres d’aniso- 
tropie, les forces moyennes et les chargements 
externes est prbenti?e sur la base de la simulation 
numkrique d’essais sur des assemblages plans gra- 
nulaires. On analyse l’importance physique des 
paramtitres microstructuraux introduits et leur 
ivolution pendant les dkformations de cisaillement. 

NOTATION M 
second-order coefficient of contact 
normal anisotropy 
second-order coefficient of average 
normal force anisotropy 
second-order coefficient of average 
tangential force anisotropy 
average particle diameter 
contact normal distribution function 
contact force vector, normal and 
tangential (shear) contact force vector 
components 
distribution of average normal and 
tangential (shear) contact forces 
average normal contact force over all 
contacts 
contact vector, contact vector 
length = distance between centres of 
particles in mutual contact 
assembly average contact vector 
length 
distribution of contact vector lengths 
contact density (m, = M/V) 
number of contact falling within 
group orientational interval Qg 

V 
6 Et 

total number of assembly contacts 
unit vector 
contact normal vector 
total number of assembly particles 
contact tangent vector 
joint contact vector length-orien- 
tation distribution 
assembly area (or volume) 
strain tensor, deviatoric strain E, = 
&ll - &**I2 + ($2 + E2112) 
co-ordination number Iv = M/N) , 
second-order principai’ direction of 
contact anisotropy 
second-order principal direction of 
average normal contact force aniso- 
tropy 
second-order principal direction of 
average tangential contact force 
anisotropy 
stress tensor 
normal invariant stress quantity 
deviatoric invariant stress quantity 

INTRODUCTION 

Discussion on this Paper closes 2 April 1990; for further 
details see p. ii. 
* University of Waterloo, Ontario. 
t Royal Military College of Canada, Kingston, Ontario. 

Engineering behaviour of granular materials is 
commonly expressed in terms of macroscopic 
characteristics that are ultimately based on con- 
tinuum parameters like stress and strain. Much of 
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the current research effort is directed at estab- 
lishing stress-strain relationships with the ulti- 
mate objective of solving boundary value 
problems of engineering interest. Although a con- 
stitutive model can be developed based on a com- 
bination of experimental data and formal 
principles of continuum mechanics, such develop- 
ments cannot guarantee that the physics of 
material behaviour is adequately represented in 
the model. Perhaps more importantly, such 
approaches seldom offer physical insight into the 
observed macroscopic behaviour of granular 
materials. 

Another approach to constitutive modelling 
that offers physical understanding is to treat a 
granular material as an assembly of particles 
interacting by means of contact forces and 
attempt to derive stress-strain relationships on 
this basis. This Paper is a contribution toward 
that goal and it considers in detail a relationship 
between the stress tensor and averages of micro- 
scopic parameters, contact orientations and 
contact forces. The emphasis of the Paper is on 
the physical aspects of the relationship between 
stresses, average contact forces and characteristics 
of a generally anisotropic fabric of granular 
materials. A direct link between the measure of 
deviatoric load and a parameter of fabric aniso- 
tropy presented in the Paper emphasizes the well- 
known phenomenon of induced anisotropy in 
sands. 

Most analytical developments in the Paper are 
limited to relationships between micro- and 
macro-parameters for a two-dimensional analog 
of granular materials represented by plane 
assemblies of discs. The introduction of this 
model system dates back to the work of Schnee- 
beli (1956) on assemblies of metal rods. Experi- 
mental work with assemblies of discs made of 
optically sensitive materials (e.g. Dantu, 1957, 
1968; Oda, 1972a, b, c; de Josselin de Jong & 
Verruijt, 1969; Drescher & de Josselin de Jong, 
1972; Oda & Konishi 1974a, b) have provided 
qualitative understanding of mechanisms of load 
transfer in granular materials. More recent work 
using numerical simulation of plane assemblies of 
discs (e.g. Cundall & Strack 1979a, b; Cundall, 
Drescher & Strack, 1982; Thornton & Barnes, 
1986; Bathurst & Rothenburg, 1988a, b) offers a 
unique opportunity to obtain complete quantitat- 
ive information on all microscopic features of an 
assembly of particles. These studies can guide 
theoretical developments that are based on a 
micromechanical approach to stress-strain 
behaviour of granular media. 

The search for explicit relationships between 
stress tensor and parameters that describe inter- 
particle forces and fabric has been the subject of a 
number of papers beginning with the work by 

Dantu (1957) and Weber (1966). Since then the 
problem has been pursued by others such as 
Mehrabadi, Nemat-Nasser & Oda (1982), 
Cundall & Strack (1983) and Thornton & Barnes 
(1986). A common starting point in these previous 
investigations is a relationship between the 
average stress tensor and intergranular forces. 
Thereafter, the differences are in the statistical 
treatment of microscopic information, averaging 
techniques and the ease with which the final 
result can be physically interpreted. The 
approach used in the current investigation resem- 
bles one that could be adopted by an experi- 
menter who has complete information on all 
microscopic features of a granular assembly and 
attempts to establish regular trends from an over- 
whelming volume of seemingly random data. In 
the current study a few simple parameters are 
introduced that describe average characteristics of 
contact forces and fabric. These parameters are 
then explicitly related to mobilized friction angle 
in granular materials. 

The established relationships are verified using 
numerical simulation of a biaxial compression 
test on an assembly of discs comprising 1000 par- 
ticles. In addition, the results of this numerical 
simulation have been used to trace the evolution 
of internal forces and characteristics of stress- 
induced fabric anisotropy and to illustrate the 
physical significance of parameters involved. 

QUALITATIVE FEATURES OF LOAD 
TRANSFER IN GRANULAR ASSEMBLIES 

Important qualitative features of load transfer 
in granular assemblies can be conveniently illus- 
trated by reference to an experiment on an 
assembly of photo-elastic discs. The pattern of line 
segments reproduced in Fig. l(a) after de Joss- 
elin de Jong & Verruijt (1969) represents orienta- 
tions and magnitudes of interparticle forces in an 
assembly of discs confined within rectangular 
platens. The assembly is under deviatoric bound- 
ary load. The thickness of lines is proportional to 
the magnitude of contact forces. Higher forces 
can be identified with contacts oriented towards 
the direction of maximum boundary load. To 
emphasize this bias, Fig. l(b) and (c) illustrate 
groups of vertical and horizontal load-bearing 
contacts represented by lines connecting centres 
of particles. The difference between the numbers 
of vertical and horizontal contacts is a measure of 
geometrical anisotropy in microstructure of the 
assembly. The fact that vertical and horizontal 
contacts also carry forces of distinctly different 
magnitudes illustrates an important link between 
microscopic geometry and characteristics of load 
transfer. Although forces acting at contacts with 
similar orientations vary in a seemingly random 
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Fig. 1. Biaxial compression test on an assembly of photo-elastic discs (after de 
Josselin de Jong and Verruijt, 1969): (a) distribution of contact forces; (b) 
vertical contacts; (c) horizontal contacts 

manner, average forces over such groups are con- 
strained by conditions of static equilibrium and 
characteristics of fabric. As such, parameters 
describing average forces and anisotropy in 
contact orientations can be related to boundary 
loads. The primary objective of this Paper is to 
establish this relationship. 

MICROSCOPIC CHARACTERISTICS OF 
GRANULAR ASSEMBLIES 

During shearing deformations, cohesionless 
granular assemblies exhibit continuous changes in 
the evolution of interparticle forces and internal 
geometry. In particular, shearing deformations 
lead to changes in magnitude and distribution of 
interparticle forces. Simultaneously, there are 
changes in the number of load-carrying contacts 
and their distribution of orientations. Basic con- 
cepts related to mechanisms of load transfer can 
be introduced empirically by referring to a 
numerically simulated biaxial test carried out on 
the assembly of 1000 discs shown in Fig. 2(a) and 
reported by Bathurst (1985). The stress-strain 
curves for this test are shown in Fig. 2(b). The 
geometry and contact forces in the simulated 
assembly under initial hydrostatic conditions and 

at peak stress ratio are illustrated in Figs. 3(a) 
and 4(a). 

CHARACTERISTICS OF FABRIC 
Contact density 

An instantaneous geometrical state of an 
assembly of N particles can be characterized by 
the average co-ordination number of the 
assembly y = M/N, where M is twice the number 
of physical contacts. A similar characteristic 
which is a convenient descriptor in later develop- 
ments is the assembly contact density m, where 

m, = M/V (1) 

Here V is the volume of the assembly (or its area 
in the plane case). Fig. 2(c) illustrates reduction in 
co-ordination number (or contact density) during 
shearing deformations and is consistent with 
macroscopically observed dilation. 

Contact density is a limited descriptor of the 
state of packing as it carries no information on 
orientations of interparticle contacts. Considering 
that intergranular forces are strongly dependent 
on orientation of contacts (Fig. l), complete 
description of load transfer in granular assemblies 
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Fig. 2. Results of numerically simulated biaxial compression test: (a) biaxial 
compression test on 1000 disc assembly; (b) str-train response; (c) co- 
ordination number against deviatoric strain 
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Fig. 3. Distribution of contact normals and average interparticle force components: (a) assembly at initial (hydrostatic) 
stress condition; (b) initial distribution of contact normals; (c) initial distribution of average normal forces; (d) initial 
distribution of average tangential forces 

requires information on the distribution of 
contact orientations. 

Contact orientations 
Orientations of contacts for plane assemblies of 

discs can be characterized by an angular distribu- 
tion E(B) defining the portion of contacts AM(B) 
falling within an angular interval 88. The polar 
histogram in Fig. 3(b) characterizes contact orien- 
tations for the initial state of the test in Fig. 3(a) 
when the assembly contains about 2000 physical 
contacts. The assembly can be considered geo- 
metrically isotropic in the sense that there is no 
systematic bias in the number of contacts of any 

particular orientation. To illustrate this point 
further, the circular distribution in Fig. 3(b) is 
visually adequate to approximate the empirical 
histogram. 

During shear deformations, contacts oriented 
along the direction of maximum tensile strain dis- 
integrate more rapidly than contacts of other 
directions. Consequently, the distribution of 
contact orientations becomes markedly aniso- 
tropic, as illustrated in Fig. 4(b) depicting the 
assembly at peak stress ratio. Considering that 
E(0) is such that directions 0 and Q + z are physi- 
cally equivalent, it can always be represented by a 
Fourier series containing even components. An 
adequate approximation for the normalized 
contact orientation distribution can be obtained 



606 ROTHENBURG AND BATHURST 

(b) 

(cl 

f,(f/)/f, Measured 

‘0.2 

(d) 

Fig. 4. Distribution of contact normals and average interparticle force components during biaxial compression test: (a) 
assembly at peak stress ratio; (b) contact normals at peak stress ratio; (c) average normal forces at peak stress ratio; 
(d) average tangential forces at peak stress ratio 

on the basis of a second Fourier component as the direction of anistropy. When a = 0 the dis- 
follows tribution is isotropic and E(0) = 1/2a as illus- 

trated in Fig. 3(b). The predominant trend in the 

E(0)=~{l+acos2(0-0,)} (2) 
distribution of contact orientations at peak stress 
ratio can be represented by E(B) with a = 0.22 
and 0, z 7r/2 (Fig. 4(b)). It should be noted that 

where n is a parameter defining the magnitude of the approximation to the observed histogram of 
anisotropy in contact orientations and 0, defines contact orientations can be improved by includ- 
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Fig. 5. Contact normals, contact vectors and contact forces 

ing higher order Fourier components in equation 
(2). 

The parameter a can be used to trace the evol- 
ution of geometrical anisotropy during shear 
deformations. Physically similar parameters to 
describe the same process have been used by 
Biarez & Wiendieck (1963), and Konishi (1978). It 
can be shown that parameter a is a deviatoric 
invariant of a symmetric second-order tensor 
describing the distribution of contact orientations 
and 0, is an eigenvector of this tensor. This obser- 
vation leads to a simple analytical technique to 
calculate a and ea from contact orientation data 
(e.g. Bathurst, 1985). The description of internal 
geometry by a so-called fabric tensor appears 
elsewhere in the literature (e.g. Satake, 1978; 
Rothenburg, 1980; and Mehrabadi et al., 1982). 

For finite assemblies where the spectrum of 
contact orientations is always discrete, expression 
(2) is an approximation. Only in the limiting case 
of an infinite system can E(B) be assumed contin- 
uous to reflect the notion of geometrical disorder 
in discrete systems. 

In essence, determination of parameters a, 8, 
(or a,, Qr, a, and 0,) can be carried out using 
relationships such as 

s 

Zn 
E(B) cos 28 d0 = (a/2) cos 20, 

0 

s 

Zn 
E(O) sin 20 do = (a/2) sin 28, (3) 

0 

Contact vectors 
Although the most common geometrical char- 

acteristic of a granular assembly is the distribu- 
tion of particle sizes, it is an inconvenient 
descriptor of geometry as it relates to load trans- 

fer. For example, during the process of deforma- 
tion, particles having a wide range of sizes may 
exhibit a preferential affinity to formation or dis- 
integration of contacts with their neighbours and 
some particles may not participate in load trans- 
fer at all. 

A characteristic of microscopic geometry that 
reflects the particle size distribution and is 
directly related to mechanisms of load transfer is 
the distribution of distances between each particle 
centroid and points of contact that transmit force 
to its immediate neighbours. In this text, vectors 
connecting centroids of particles and points of 
contact are referred to as contact vectors 
(Rothenburg & Selvadurai, 1981). For spherical 
particles and discs, contact vector lengths are 
equal to particle radius and orientations of 
contact vectors are coincident with contact 
normals. Fig. 5 illustrates the definition for 
contact vector. 

For the general case of particles of arbitrary 
shape and gradation it is necessary to introduce a 
joint contact vector length-orientation distribu- 
tion S(f) defining the portion of contacts within a 
range of contact vectors between I and I + dl. The 
numerical simulations reported in this study 
showed that contact vector lengths were sta- 
tistically independent of contact orientations at 
all stages of sample deformation. Hence, for 
assemblies of discs (or spheres) 

S(I) = L(f’)E(n) (4) 

where n is the unit vector used to define the orien- 
tation of the contact normal. For plane particles 
n = {cos (e), sin (0)) whereas for spherical par- 
ticles, components of n will be expressed in terms 
of spherical angles. 

In the subsequent analytical investigation the 
concept of contact vector emerges naturally from 
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the analysis of conditions of static equilibrium in 
assemblies of particles of arbitrary shapes. 

CONTACT FORCES 
Magnitudes of contact forces in an assembly 

with irregular geometry vary from contact to 
contact as depicted in Figs 1, 3(a) and 4(a). 
Despite the apparent randomness in variation of 
contact forces, regular trends emerge when 
normal and tangential components of inter- 
particle forces are averaged over groups of con- 
tacts with similar orientations. Normal and 
tangential contact forces can be referenced to 
Fig. 5. 

The uniform angular distribution of average 
normal forces illustrated in Fig. 3(c) reflects the 
fact that the assembly is geometrically isotropic 
and is under hydrostatic load (initial state). The 
corresponding tangential components of contact 
forces averaged over groups of similarly oriented 
contacts are zero (Fig. 3(d)). Tangential force 
components can have positive or negative sign to 
reflect the sense of rotation imparted on the parti- 
cle. Therefore, zero average tangential force does 
not imply the absence of tangential forces at con- 
tacts. 

The angular distribution of average normal 
forces at the state of peak stress ratio is shown in 
Fig. 4(c). On average, maximum forces are carried 
by contacts with orientations close to the direc- 
tion of maximum principal stress. Minimum 
average normal forces are associated with con- 
tacts oriented along the minimum principal stress 
direction. The shape of the distribution is similar 
to the contact orientation distributions con- 
sidered previously and can be approximated by a 
similar analytical expression 

f’,(0) = f,{ 1 + a, cos 2(0 - Or)} (5) 

For isotropic assemblies,f, is a constant that rep- 
resents the average normal force over all contacts 
in the assembly. For anisotropic assemblies, 
where the number of contacts in different orienta- 
tions varies,f, is the measure of average normal 
contact force when all groups are given equal 
weight, i.e. 

f. = ‘-j#) d0 
s 

(6) 
0 

The coefficient a, defines the magnitude of the 
directional variation of average normal forces 
and Br defines the direction of maximum average 
normal force. It should be noted that tIr and 8. in 
(2) are not necessarily coincident with the major 
principal stress direction. This is, nevertheless, the 
case for the described biaxial test that does not 
involve principal stress rotation. 

The angular distribution of average tangential 
forces (Fig. 4(d)) shows four symmetrical peaks 

for groups of contacts oriented at about 45” to 
principal stress directions. However, average 
tangential forces for groups of contacts oriented 
along principal stress directions remain zero, as at 
the initial state. Forces on contacts of these two 
orientations are essentially normal to planes of 
contact (on average). The alternating sign of 
average tangential forces is demanded by moment 
equilibrium for each particle. 

A suitable analytical expression to approximate 
distributions of the type shown in Fig. 4(d) is as 
follows 

f;(Q) = -_&a, sin 2(0 - 0,) 

where a,, similar to a, in (6) defines the magni- 
tude of directional variation of tangential forces 
and 8, defines directions in which tangential force 
is zero on average. The coefficient & is the 
average normal force, as defined previously. It is 
introduced here for convenience as a scaling 
factor on tangential forces. The negative sign in 
equation (7) reflects the adopted sign convention 
when positive tangential forces tend to rotate a 
particle counter-clockwise. 

CHANGES IN ANISOTROPY AND FORCES 
DURING SHEAR DEFORMATIONS 

Detailed microscopic information on a numeri- 
cally simulated assembly of discs can be used to 
trace the evolution of microstructure and contact 
forces during shear deformations. Physical trends 
in the simulated system become apparent if the 
complete microscopic information is reduced to a 
few statistical characteristics such as those intro- 
duced in the preceding section. 

Evolution of contact orientation distribution 
The evolution of contact orientations can be 

best expressed in terms of parameter a in equa- 
tion (2) that is essentially proportional to the dif- 
ference in the number of vertical and horizontal 
contacts and describes the degree of anisotropy in 
contact orientations. Fig. 6(a) shows that the 
degree of anisotropy increases with sample distor- 
tion. This trend is due to the overall disinte- 
gration of interparticle contacts (Fig. 2(c)). The 
loss of contacts is most pronounced for contacts 
oriented along the direction of tensile strain 
(horizontal strain in this case). Similar trends 
have been observed in physical tests on photo- 
elastic discs reported by Oda & Konishi (1974a) 
and from numerical simulation of assemblies of 
discs reported by Cundall et al. (1982) and Thorn- 
ton & Barnes (1986). 

Evolution of average contact forces 
In the simulated biaxial test examined here the 

overall magnitude of contact forces increases. Of 
primary importance to the subsequent analytical 
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investigation is the directional variation of 
average normal forces controlled by the param- 
eter a, in the expression for the distribution of 
average normal forces (5). Fig. 6(b) illustrates the 
evolution of this parameter during the progress of 
the test. Close inspection of test results shows 
that the reduction in a, starts past 2.5% of shear 
strain whereas the overall macroscopic softening 
begins later (i.e. 3% shear strain Fig. 2(b)). 

Detailed examination of particle movement in 
this test revealed that the reduction in a, is 
related to reorganization of microstructure when 
the dilation rate is maximum. Dilation is initiated 
by movement of highly compressed conglomer- 

04 
(W 

Fig. 6. Evolution of micro-structural anisotropy daring 
numerically simulated biaxial compression test: (a) 
contact anisotropy; (b) normal force anisotropy; (c) 
tangential force anisotropy 

ates of particles that move as rigid blocks and 
disrupt the assembly. This observation is consis- 
tent with physical tests of Drescher & de Josselin 
de Jong (1972) who identified conglomerates of 
particles that tend to move as rigid blocks. In 
general terms, the reduction in a, reflects the loss 
of the capacity of rigid blocks to sustain high 
forces owing to local horizontal spreading of par- 
ticles that support these blocks. 

The parameter a, characterizing the distribu- 
tion of average tangential components of contact 
forces features a rapid rise to a peak value (Fig. 
6(c)) followed by a slow decline in magnitude. It is 
apparent from this trend that the assembly is 
kinematically locked initially and deforms elasti- 
cally. Nevertheless, even during initial elastic 
deformations, contacts disintegrate and param- 
eter a increases rapidly. At this stage the tangen- 
tial forces increase in response to relative 
translational movement of particles. When the 
number of contacts where slip is possible reaches 
some threshold, the assembly becomes kine- 
matically mobile and dilates with further loss of 
contacts. As contact density decreases, particles 
have increased rotational freedom and, as a 
result, tangential forces are slowly released. It 
should be noted that at all deformation stages in 
the numerically simulated test the number of con- 
tacts where slip occurs was small. The same 
observation has been reported from similar physi- 
cal tests on assemblies of photo-elastic discs by 
Oda & Konishi (1974a). 

Relationship between deviatoric load and 
microstructural parameters 

The evolution of microstructural characteristics 
with shear strain (Fig. 6) bears a qualitative 
resemblance to familiar stress-strain curves for 
granular materials. For example, the degree of 
contact anisotropy (parameter a) varies with 
shear strain similar to the stress-strain response 
of a loose granular material. Also, parameter a, 
that describes the directional variation of contact 
forces features the type of softening response 
usually associated with dense granular materials. 
This correspondence is not coincidental and it 
will be shown in the next section that the intro- 
duced microscopic parameters are related to the 
measure of deviatoric load imposed on an 
assembly of discs as follows 

g22 - CT11 

011 + 022 

= f(a + a, + a,) (8) 

Fig. 7 presents the stress-strain response in the 
simulated biaxial compression test expressed in 
terms of ((Tag - (rll)/(gll + oz2) against shear 
strain and the quantity f(a + a, + a,) determined 
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Fig. 7. Assembly stress in terms of coefficients of aniso- 
trepy 

on the basis of microscopic information. It is 
visually apparent that relationship (8) accurately 
relates the macroscopic measure of shear stress 
with characteristics of microstructure. This 
expression applies to conditions when the prin- 
cipal direction of stress is coincident with the 
direction of anisotropy. 

STATIC EQUILIBRIUM IN GRANULAR 
ASSEMBLIES 

When discrete point loads are applied at a 
boundary of a material viewed as a continuum, 

any statically admissible (generally nonhomo- 
geneous) stress field within the media is such that 
the volume average of the stress tensor is related 
to boundary forces as follows (Landau & Lifshitz, 
1959) 

1 
uij=-- C XBrjS i,j= 1,2,3 

v fiES 
(9) 

where rB are locations of points where loads fa 
are applied to the sample boundary S. Although 
equation (9) originates in continuum mechanics, 
its physical meaning in the context of discrete 
assemblies can be illustrated by referring to the 
most common idealized test condition when a 
rectangular sample of material is confined within 
frictionless platens (Fig. 8). In this case, equation 
(9) is simply a statement of force balance between 
boundary loads specified in terms of stress tensor 
and boundary forces. To demonstrate this point it 
is sufficient to calculate the right-hand sum in 
equation (9) separately for each of the four rec- 
tangular platens in Fig. 8. For example, the com- 
ponent crri (based on equation (9)) can be 
calculated as follows 

Fig. 8. Ideal&d granular assembly confined within rectangular platens 
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Since the platens are considered frictionless, thef, 
component of forces between boundary particles 
and platens ab and cd are zero. The remaining 
sums can be evaluated by noting that all particles 
adjacent to the platen bc have the same x-co- 
ordinates of contact points (i.e. L,). Similarly, for 
the platen da all x co-ordinates are zero. The fol- 
lowing chain of calculations complete the illustra- 
tion 

(11) 

The same calculations can be done for other com- 
ponents of the stress tensor. 

If a sample is confined within an arbitrary 
shaped boundary and the intent is to study its 
behaviour under conditions of prescribed macro- 
scopically uniform stress crij, boundary contact 
forces for discrete analysis must be selected as 
rja = oijnjSA8. Here AB is the area tributary to the 
particle and na is the orientation of a contact 
where the load is applied. For any selection of 
tributary areas, equation (9) gives an exact 
volume average of stresses over all particles in the 
volume (if particles are treated as continuum). 
The difference between the volume average of 
stresses in particles and the prescribed macro- 
scopic stress diminishes with number of particles 
in the studied volume. 

The relationship (9) is inconvenient from an 
analytical point of view as it contains positions of 
boundary particles. A form of this relationship 
that makes no explicit reference to the shape of 
the studied volume can be obtained by noting 

that for any assembly in static equilibrium the fol- 
lowing relationship between boundary and inter- 
nal forces is satisfied (e.g. Rothenburg, 1980) 

1 fi%js = 1 fi”lj W) 
DES ce” 

where I’ are contact vectors and f’ are contact 
forces introduced earlier. Comparison of equation 
(9) and (12) results in the following representation 
of stress tensor 

uij = + 1 fiCljC i,j= 1,2,3 (13) 
es” 

This relationship is equally valid for plane and 
three-dimensional systems. For plane systems, k’ 
is the area occupied by the assembly and indices 
are restricted to i, j = 1,2. 

As a function of discrete microscopic param- 
eters, the stress tensor in the form of equation (13) 
and/or its invariants can be evaluated exactly 
only when the values of all parameters are preci- 
sely known. When this is done using the results of 
numerical simulations and the stresses are calcu- 
lated for volumes with progressively larger 
number of particles it becomes clear that the 
influence of any single discrete characteristic 
diminishes with the volume size. Calculations of 
this nature are illustrated in Fig. 9 showing the 
ratio (cr22 - trrl)/(~rl + crZ2) calculated from 
equation (13) and plotted for subvolumes with 
progressively increasing number of particles. The 
trend in the figure suggests that in the hypotheti- 
cal limit of an infinite system the dependence of 
volume averages on individual discrete param- 
eters may vanish (the so-called thermodynamic 
limit in statistical physics, Landau & Lifshitz, 
1959). In this limiting case, the discrete spectra of 
characteristics like contact forces, contact orienta- 
tions, contact vector length can be assumed to be 
continuous and described in terms of densities. 

0.31 1 I 

0 10 20 
r 

do 

Fig. 9. Influence of assembly size on assembly stress ratio 
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For plane systems these functions were given by 
equations (l), (2), (5) and (7). 

To represent an infinite sum in equation (13) by 
an integral expression it is sufficient to note that a 
group of contacts with contact vectors within an 
interval 1 and I+ dl with m, S(r) dl terms make the 
contribution m, f’(r)S(r) df into the overall 
volume average. To assess the contribution of all 
groups it is now sufficient to integrate over all 
lengths and orientations of contact vectors 

uij = m, v~(I)lp(f)S(Z) dl 
s 

(14) 

In essence, equation (14) for stress tensor is no 
more than a statement of static equilibrium in an 
infinite granular assembly. When an assembly 
consists of spherical particles or discs and when it 
is permissible to neglect the statistical dependence 
between the contact vector lengths and their 
orientations as well as the dependence of average 
contact forces on the length of contact vectors, 
the above relationship can be simplified as 

m, 4& 
u -- 

11 - 
--r 2 

1 + 7 + ; (a + a, + a,) 

_ - 

ff 

s 

-F 1 +~-;(n+a”+o,)cos(20~) 22 - 
{ 

oij = m,& f;(n)nj”(n)e(n) dn (15) 
Y - - 012 = 021 - 

where &, is the contact vector length averaged 
over all contacts. For spherical particles and discs 
with a narrow distribution of radii, the average 
contact vector length is essentially the average 
particle radius. 

because the sum of tangential forces acting on 
each particle must be zero (if forces are con- 
sidered to be transferred through point contacts). 
The symmetry condition (17) must be looked on 
as a constraint on the distributions involved in 
this expression. For conditions when the direction 
of contact anisotropy 0. is coincident with _the 
principal directions of force, expressions for f,(O) 
and E(0) in the form (7) and (2) satisfy this con- 
straint. More general conditions of non- 
coincidence of the direction of anisotropy and the 
principal direction of stress have been explored 
by Rothenburg (1980). 

If distributions (2), (5) and (7) with 0, = Or = Ot 
are substituted into equation (16) and integration 
is performed, the following expressions for stress 
tensor components can be recovered 

STRESS-FORCE-FABRIC RELATIONSHIP 
FOR PLANE SYSTEMS 

The physical consequence of equation (15) for 
the stress tensor can be explored by explicitly 
specifying distributions of contact orientations 
and average forces. Considering that distributions 
of average forces were specified previously in 
terms of normal and tangential components, it 
is convenient to rewrite the two-dimen_sional 
version of equation (15) by introducing i(O) = 
f,(0)nic +f,(O)t,’ where ic is the unit vector tangent 
to the line of contact. The expression (15) takes 
the form 

oij = m, i, 
s 

2n 

Lf,(O)n;n; +f;(O)t;n;]E(O) d0 
0 

i, j = 1, 2 (16) 

It should be noted that expression (16) does not 
necessarily assure the symmetry of the stress 
tensor for aribtrary f;(O) and E(0). The condition 
of symmetry can be written as 

oij - oji = m, i, 
5 
'>E(O) d0 = 0 (17) 

0 
From a physical point of view the above relation- 
ship reflects the condition of moment equilibrium 

(18) 
The above expressions for components of the 

stress tensor immediately suggest that the major 
principal direction of stress is 0, (i.e. the direction 
of anisotropy in contact orientations as well as 
the assumed preferred direction for average 
forces). The invariants of the stress tensor (in the 
form of parameters of the Mohr circle) are as 
follows 

The ratio of the above two invariants is indepen- 
dent of the number of contacts and is as follows 

01 f(a + a, + n,) -= 
on (1 + (a, 4)) 

(21) 

The latter quantity is frequently associated with 
the mobilized angle of friction for cohesionless 
material (i.e. sin $J = CTJ~,). However, the derived 
relationships are for any plane granular assembly 
of discs, irrespective of specific types of particle 
interactions. This relationship relates character- 
istics of microstructural response with the level of 
deviatoric load. For brevity, expression (21) can 
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be referred to as the stress-force-fabric relation- 
ship. 

For the simulated cohesionless assemblies, 
parameters a, a,, a, are such that the product 
au,,/2 in the denominator of equation (21) is small 
and can be neglected, resulting in the concep- 
tually simple relationship gJun = f(u + a, + a,). 
This simplified expression suggests that the 
capacity of a cohesionless granular assembly to 
carry deviatoric loads is due to its ability to 
develop anisotropy in contact orientations or to 
withstand directional variation of average contact 
forces. All contributions to deviatoric load capa- 
city are additive. The verification of this relation- 
ship was presented and is illustrated in Fig. 7. If 
the term aa J2 in equation (21) is not neglected, 
the theoretical and experimental curves in Fig. 7 
become practically indistinguishable. This is 
hardly surprising as equation (21) is no more than 
a condition of static equilibrium in an infinite 
assembly. It appears that a 1000 particle assembly 
adequately models an infinite system for purposes 
of force balance. It should be noted that the 
relationship (21) has been verifed by numerically 
simulating tests with different stress paths that 
involve no stress rotation (Bathurst, 1985). These 
simulations resulted in the same level of accuracy 
as the biaxial compression test that is used here 
as an illustration. 

DISCUSSION OF FINDINGS 
Theoretical developments presented in this 

Paper are based on detailed investigation of con- 
ditions of static equilibrium in granular 
assemblies where particles are assumed to interact 
by means of contact forces. Under deviatoric 
loads the magnitudes of forces carried by contacts 
are strongly biased by the orientation of contacts. 
Contacts oriented along the direction of major 
principal stress carry higher forces whereas lower 
forces are associated with contacts oriented in the 
minor principal stress direction. However, the 
force per contact for contacts of any given orien- 
tation depends on the number of contacts with 
this orientation. This delicate balance between 
internal forces and external loads is expressed in 
the derived relationship for stress tensor in terms 
of average forces and the distribution of contact 
orientations. 

To make the mathematics of discrete systems 
manageable it was necessary to use a standard 
technique of classical statistical physics where 
studies of large but finite systems are replaced by 
the analysis of infinite systems. It was shown that 
the force balance relationships derived for an 
infinite system provide an accurate description for 
assemblies comprising as little as 1000 particles. 
For such systems, the stress tensor is an average 

characteristic of forces acting on about 2000 
physical contacts. However, macroscopic defor- 
mational properties of the same size assembly 
may be controlled by a relatively small number of 
particle clusters. 

From a physical point of view the most signifi- 
cant result of this investigation is the introduction 
of parameters that quantify essential features of 
microstructure such as anisotropy in contact 
orientations and average contact forces. These 
parameters were shown to be directly related to 
the mobilized angle of friction which is the most 
common measure of shearing resistance (i.e. sin 
#J = &a + a, + a,)). 

There have been several other attempts to 
repartition the stress tensor for granular 
assemblies into components associated with dis- 
tinctly different micromechanical aspects of load 
transmission (e.g. Cundall & Strack, 1983; Meh- 
rabadi et al. 1982, and Thornton & Barnes 1986). 
In all cases an attempt is made to identify contri- 
butions of normal and tangential components of 
contact forces as well as fabric anisotropy to a 
measure of deviatoric load. Expression (21) 
appears to be a uniquely simple relationship that 
is directly verifiable and conveys a clear statement 
of the additive contributions of different mecha- 
nisms of load transmission to the shear capacity 
of granular materials. 

Of the three strength components that con- 
tribute to the overall shearing resistance, the least 
significant is the one that is associated with 
tangential forces. For example, at the limiting 
state of the simulated test the parameter a, 
accounts for only 11% of sin 4 at large strains. 
To some extent the decomposition of shearing 
resistance into components related to anisotropy 
and directional variation of contact forces 
obscures the role of interparticle friction. Detailed 
observations reported by Bathurst (1985) suggest 
that only a small interparticle friction is necessary 
to provide stability to clusters of particles that 
carry high normal forces. It appears that these 
highly oriented clusters of particles are 
responsible for the component of strength associ- 
ated with the parameter a,, which is the largest 
contributor to the overall shearing resistance 
(55% of sin #J at large strains). The large values of 
a, determined from the simulated test point out 
that granular assemblies tend to transfer load 
along preferential paths characterized by high 
normal forces. These load paths are clearly identi- 
fiable in both numerical simulations by the 
Authors and others (e.g. Cundall 8~ Strack, 1979; 
Thornton & Barnes 1986) and in physical tests on 
assemblies of photo-elastic discs (e.g. de Josselin 
de Jong & Verruijt 1969, Oda & Konishi, 1974a). 
When the assembly dilates, the clusters of par- 
ticles that transfer high normal forces lose their 
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lateral support and can no longer sustain high 
contact forces. Macroscopically this phenomenon 
is manifested as strain softening. 

Although anisotropy in contact orientations, 
expressed in terms of parameter n, appears as a 
positive contributor to the overall shearing resist- 
ance (about 40% in the limiting state), develop- 
ment of anisotropy is a manifestation of damage 
owing to preferential loss of interparticle contacts. 
Although a is a positive contribution to strength, 
the damage caused by loss of contacts ultimately 
reduces n, In view of the decomposition of shear 
strength according to equation (8), parameters a, 
a, and a, can be looked on as additive strength 
components that characterize the state of micro- 
structure. 
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