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The paper presents a micromechanical analysis of plane granular assemblies of discs
with a range of diameters, and interacting according to linear contact force-

interparticle compliance relationships. Contacts are assumed to be fixed and in-
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destructible. Macroscopically, the system is described in terms of a two-dimensional
analogue of generalized Hooke’s law. Explicit expressions Sfor elastic constants in
terms of microstructure are derived for dense isotropic assemblies. It is shown that
Poisson’s ratio for dense systems depends on the ratio of tangential to normal con-
tact stiffnesses. The derived expression for Poisson’s ratio is verified by numerically

simulating plane assemblies comprising 1000 particles. The effect of density on
Poisson’s ratio is investigated using numerical simulations. The theory of dense
plane systems is extended to dense three-dimensional systems comprising spheres.
Finally, it is shown that Poisson’s result v=1/4 is recovered Sfor spherical particles
with central interactions.

Introduction

This study is concerned with the micromechanics of two-
dimensional random isotropic assemblies of discs. The paper
is limited to a detailed analysis of microscopic processes in the
simplest system of this class comprising particles with a fixed
system of indestructible contacts. Particles interact according
to linear contact force-interparticle compliance relationships
at the contacts.

From a macroscopic point of view, deformation properties
of the system are described by a two-dimensional analogue of
generalized Hooke’s law and emphasis is placed on the rela-
tionship between macroscopic elastic parameters (E, v) and
characteristics of microstructure such as interparticle stiffness
and contact density.

Numerical simulations reported in this paper show that
despite the apparent simplicity of the considered systems. their
behavior is complex at the microscopic level. Results of
numerical simulations are used in the current study to both
guide and verify analytical developments which link
microscopic and macroscopic descriptors.

Results of this study show that the principal element of
complexity is local interparticle rotations which, nevertheless,
become negligible in very dense systems. For these systems, an
explicit relationship between Poisson’s ratio and the ratio of
linear contact stiffness components is derived. The latter
development is presented for both plane and three-
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dimensional systems and Poisson’s result »=1/4 (e.g., Love,
1926) is recovered for spherical particles with central
interactions.

Description of Microstructure

General. Microchemical studies of granular materials re-
quire introduction of some unique physical concepts and have
necessarily evolved a terminology specific to the discipline. In
the soil mechanics literature the term fabric has been used ex-
tensively as a generic term to describe the geometry of particle
packing (microstructure). In this section, characteristics of
fabric relevant to mechanical description of two-dimensional
assemblies of discs are introduced. Similar characteristics can
be introduced for three-dimensional systcms.

The assemblies under study are assumed to comprise essen-
tially rigid particles which are joined together at indestructible
compliant point contacts. .

An individual particle at static equilibrium may be in con-
tact with several neighbors. The number of contacts per parti-
cle is called the coordination number of the particle. Clearly
each physical contact contributes two contacts to the
assembly. The average coordination number, v of the
assembly is:

My m
N
Here M, represents the total number of contacts within the
assembly volume and N, the total number of particles.

Coordination number introduced above is an incomplete
description of particle packing as it carries no information on
relative particle orientations. This aspect of microstructure is
often described by particle contact normals where a contact
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contact tangent line

a) Non-circular Particle

AB

n = contact normal
!AB = contact vector
fAB = contact force

b) Disc-shaped Particle

Fig. 1 Contact normals, contact vectors, and contact forces

normal n¢ is the exterior directed normal to the tangent plane
at the point of contact between particles. The relative frequen-
cy of contacts with different orientations of normals can be
described in terms of a contact orientation distribution E(6)
such that M,E(6) Af is the number of contacts with normals
between 6§ and 6+ A8 (Horne, 1965).

Description of particles of arbitrary shape requires iden-
tification of contacts in terms of contacts vectors (Rothenburg
and Selvadurai, 1981a). For each contact, contact vector I° is
directed from the mass center of a particle to a point of con-
tact with a neighbor. The orientational distribution of contact
vector lengths implicitly contains information related to parti-
cle shape. Contact normals and contact vectors are illustrated
in Fig. 1. For spherical particles (or discs) the direction of con-
tact vectors is coincident with the direction of contact normals
and the length of contact vectors is equal to particle radius.

Microstructure of Isotropic Assemblies of Discs. In the
current study, contact normals are assumed to be distributed
homogeneously through a two-dimensional system consisting
of a very large number of discs.

Rothenburg (1980) has proposed that for two-dimensional
assemblies of discs, E(6) can be represented by a truncated
even Fourier series of the form:

E(0)=21—1r[l+ac052(0—9a)+bcos4(0—0,,)} 2)

Expression (2) satisfies the condition E(8)=E(8—x) for
assemblies of discs and when integrated over the limits
0=<0=<2xgives:

S:t E(®do=1 (3)

Terms a and b are called coefficients of anisotropy and define
frequencies of contact normals in directions of anisotropy 0,
and 6,,. It should be noted, however, that expression (2), in the
strictest sense, describes an infinite, statistically homo-
geneous, assembly where the normalized distribution function
E(6) can be continuous. For any large but finite system of par-
ticles this relationship is a useful approximation.

In this paper, theoretical developments are restricted to
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isotropic assemblies (i.e., systems with ¢=0, b=0). Under
these conditions:

1
EO)=-— @

Lack of orientational bias in numerically simulated assemblies
was checked by calculating parameters of anisotropy from
complete information on orientation of contact normals. The
technique used to carry out these calculations has been de-
scribed by Bathurst (1985).

In the current investigation, theoretical developments are
also restricted to assemblies with a narrow range of disc sizes
in which there is no bias between particle size and direction of
interparticle contacts. Hence:

EFoy=1, (5)
Here /, represents the average contact length taken from all
assembly contacts.

Theoretical Developments

Average Stress Tensor from Averages of Contact Forces.
An average stress tensor in terms of the summation of discrete
contact forces and fabric can be expressed as:

1 .
6,~,=72ffl,‘- i j=1,2 6)

ceV

Terms /¥ and / refer to scalar components of contact forces f¢
and contact vectors I¢ at contact locations (refer to Fig. 1).
Equivalent expressions for three-dimensional idealized
granular assemblies have been reported by Weber (1966), Dan-
tu (1968), Rothenburg (1980), Christoffersen et al. (1981), and
Bathurst (1985). Rothenburg (1980) and Rothenburg and
Selvadurai (1981a) have proposed that expression (6) is a
useful approximation to the stress tensor of continuum
mechanics for granular assemblies comprising a large but
finite number of particles. This equivalency can be understood
by considering sums of force-contact vector components for
many subregions of a given assembly volume. Quantities
calculated from equation (6) would be expected to fluctuate
from subvolume to subvolume. However, as the subdomains
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a) Undeformed Contact

¢} Translational Shear Displacement

b) Normal Contact Displacement

Ale,

d) Rotational Shear Displacement

Fig. 2 Contact displacement components

increase in volume and number of particles within a
homogeneous system, these fluctuations can be expected to
become smaller and smaller. This tendency to a single
representative average stress tensor is assured by the composi-
tion of the function where each term makes a small contribu-
tion to f§/5/ V. For finite but large partncle systems, the average
stress tensor from discrete information is an accurate analogue
to the stress tensor of continuum mechanics and in the follow-
ing text they are assumed equivalent (i.e., o; = 6)-

Unfortunately, calculation of the average stress tensor using
relationship (6) requires exact knowledge of contact forces and
contact vector terms for all particles. Equivalent more
manageable expressions can be developed by considering cer-
tain averages of grouped discrete information in a similar
manner to the approach adopted in the previous section.

If contacts are grouped within a finite number of orienta-
tional class intervals, then group averages fi/5(f,) can be
calculated. The stress tensor relationship (6) can now be
rewritten as:

My~ — 3
=2 FHOE©)A0 )
Oy
Here a normalized discontinuous E(6) is used to describe the
orientational distribution of contact normals. Assuming an
assembly with ‘l,im , Mlim and Al}n}) , relation (7) can be ex-
o My—o e

pressed in integral form as:

M 25
oy =—VSO SIO)E@©)do @®)

V
If isotropic assemblies are considered, possible correlations
between /5(8) and f7(6) are not a concern and the stress tensor
expression is simplified to:

m,i,

o S F5(0)n;(6)db

Oy = ()]
Here, the term m,=M,/V is introduced for brevity and is
used to denote contact density with respect to assembly area.

The above expression forms the basis of a constitutive rela-
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tionship once the link berween contact forces and strain is
established.

Relationship Between Average Contact Forces and Strain
Tensor. The link to average contact displacements can be
made through a contact force-displacement law. A linear con-
tact model offers mathematical simplicity and can be ex-

pressed as follows:
AE
t(7)
)

AE A
(2 )
AN l

Here / is the distance between particle centers in contact (i.e.,
the sum of contact vector lengths at a contact); A5/l is the
relative normal displacement between particle centers;
(AK/1+ AE /]) represents relative tangential displacement at a
contact and consists of two terms describing relative transla-
tional displacement between particle centers and relative rota-
tion. These terms are illustrated in Fig. 2. Parameters &k, and
k, in equations (10) refer to normal and tangential (shear) con-
tact stiffnesses and f%, f¢ the associated contact force com-
ponents. A positive value for f€ signifies a contact shear force
which tends to rotate a disc in a counterclockwise direction.

Further theoretical developments are simplified if rotations
A6 can be neglected. The results of numerical simulations
presented later in this paper show that this simplification is
valid for dense systems. For these systems, the development of
contact forces is entirely due to relative displacement com-
ponents between particle centers. Considering that expression
(9) for the stress tensor involves only averages of forces of
similar orientations, it is reasonable to equate the latter to
quantities describing average displacement components for
similarly oriented contacts. It is useful at this point to in-
troduce terms describing relative normal and tangential
(shear) interparticle displacement components such as 5(9)
and 685(6) averaged over groups of contacts with similar orien-
tations:

Ja

fi = (10)
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- an
s0= (212)

Averages of forces with similar orientations can now be writ-
ten as:

Fe(0)=k,6 ()
(12)
Fo(0)=k5:(0)

In order to link §5(f) and §(8) with the strain tensor, it is
convenient to resort to properties of the strain tensor of con-
tinuum mechanics as follows: In a uniformly strained con-
tinuum, a vector L connecting two arbitrary points is
transformed into vectors L+ AL in such a manner that
AL;=¢;L;. Relative displacements in the direction normal and
tangential to vector L can be calculated as follows:

T”— =€ Mnn;

(13)
T’:e,-,z,.nj i Jj=1,2
Here n and t are coincident and orthogonal to L, respectively,
and are defined by n=(cos 6, sin ) and t=(—sin 8, cos §). Ex-
pressions (13) cannot be applied on a scale comparable to the
size of grains which physically constitute a continuum.
However, if this is nevertheless done, it can expected that rela-
tions (13) will hold true when expressed as averages taken over
an ensemble of similarly oriented points. When such points
correspond to centers of particles forming contacts with
similar orientations, it is reasonable to expect that:

52 0= f(fijni”j)
5 ()= $leting)

where { is a constant. More detailed analysis presented by
Rothenburg (1980) suggests that {<1. Assumptions which
lead to equations (13) and link microscopic averages with
similar characteristics calculated on the basis of rules of con-
tinuum mechanics are quite common (e.g., Batchelor and
O’Brien, 1977). In the present paper the above relationships
are verified directly on the basis of numerical simulations
described later in this paper.

(14)

Stress-Strain Relationship. If expressions for average nor-
mal and tangential contact forces (12) are combined with
equations (14) and the resulting expression for the average
contact force vector is introduced into equation (9), then the
following stress-strain relationship can be recovered:
i,j,k,i=1,2 (15)

O =Ajuy

where:

k,l,m,

2x
ijkl:_—z‘n'—SO {n;n;nyen, +N\t;nten, }dé (16)

In these expressions, parameter X is introduced as the ratio of
tangential to normal contact stiffness (i.e., A=k,/k,).
Direct calculation of integrals defining components of A,

results in Hooke’s law for two-dimensional isotropic material
with bulk and shear moduli as follows:

K

Lkl mldkat (10

, 7
4 4 2 a7
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approximation using r
fourth-order Fourier series 7 0
expression (2) 1
0) = =—
E®) = 5-
a = 0.007
b=0.064
0.04
7=6
2
M,
—9@2 measured
9 My

Fig. 3 Normalized distribution of contact orientations for 1000 disc
assembly

Although the above moduli contain parameter { whose value
is unspecified, Poisson’s ratio is independent of { and depends
on the ratio of tangential to normal contact stiffness according
to:

1-A

3+

18)

v=

Numerical Simulation of Disc Assemblies

General. In the current investigation, numerical simula-
tion of disc assemblies comprising 1000 particles was under-
taken to verify fundamental relationships proposed in the
preceding text. A principal advantage of numerical simulation
is that it allows all microscopic information to be extracted
from the assemblies under study. In addition, the influence of
micromechanical properties such as stiffness ratio A can be
assessed more readily from these experiments than from com-
parable physical models (i.e., photo-elastic disc assemblies).

Numerical simulations were carried out using a program
which is a modified version of the program BALL originally
reported by Strack and Cundall (1978) and used by them to in-
vestigate the micromechanical behavior of cohesionless disc
assemblies. Major modifications involved changes to internal
bookkeeping to take advantage of specific computer hardware
and elimination of data updating algorithms made possible by
numerical assemblies comprising fixed contacts. The program
implements a time-finite-difference scheme which solves the
system of equations modelling a dynamic transient mechanical
system. The mechanical system can be imagined as a network
of lumped-mass-dashpot elements in which linear springs con-
nect disc-shaped masses. Although the system is dynamic, the
transient state approaches a static equilibrium condition if
loading rates at the sample boundaries are kept low enough
that inertial forces are always a small fraction of the average
contact forces acting through the assembly. Kinetic energy is
dissipated through the introduction of artificial damping,
without which, the approximation to a static equilibrium con-
dition would not be achieved.

Numerical tests were carried out from initial (undeformed)
assemblies with near-isotropic microstructure. The disc radii
in these tests fell within a narrow size range 0.78 <r/r, <1.29.
Prior to loading, the coordination number of an assembly
could be modified by searching out near contacts or deleting
selected contacts in a random manner. Qualitatively this is
equivalent to introducing small distortions in disc geometry
such that interparticle contacts are created or lost while main-
taining coincidence of contact normals and contact vectors.

The resulting microstructure for a typical assembly in the
current study is illustrated by the polar histograms plotted in
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Fig. 4 Normalized distribution of contact lengths for 1000 disc
assembly
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Fig. 5 Influence of assembly coordination number on average rota-
tional contact displacements

Figs. 3 and 4. Figure 3 shows that the assembly is essentially
isotropic with respect to the second-order distribution of con-
tact normals (i.e., a=0). Some anisotropy in higher-order
microstructure is evident from the figure and can be quan-
tified by the fourth-order coefficient of anisotropy as
b=0.064. Nevertheless, Bathurst (1985) has shown from the
results of similar numerical experiments on cohesionless disc
assemblies that coefficient terms greater than order two in
equation (2) do not significantly influence stress quantities
when anisotropic distributions for E(8) are considered in
equations (7) and (8). Isotropic microstructure with respect to
the distribution of contact lengths is clearly evident from
Fig. 4.
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5.0
1.0 c= 2.0

(measured)
€Ny

1.0

¢ = 0.95 (average)

Fig. 6(a) Stiffness reduction coefficient ¢ from distribution of average
normal contact displacements 6;:,(0)

5,6
= S.0). (measured)
C,‘jt,'nj

1.0

¢ = 0.93 (average)

Fig. 6(b) Stifiness reduction coefficient { from distribution of average
tangential contact displacements §§(9)

Test Program. A series of numerical simulations were
undertaken to verify assumptions (14) and Poisson’s ratio ex-
pression in terms of interparticle stiffness ratio (18).

Assemblies comprising 1000 discs were subjected to biaxial
compression by imposing at the sample boundary discrete
forces approximating the stress state ¢,,>0, o,,=0 and
d15 = 05, =0. Under these conditions Poisson’s ratio could be
calculated directly by measuring the resulting principal strain
ratio.

Disc interactions in this investigation were controlled by the
linear force-displacement laws given in expressions (10). The
ratio of interparticle stiffnesses was kept constant for all con-
tacts but was varied between tests over the range 0<A<1. A
stiffness ratio of unity represents a lower limit on the ratio of
tangential to normal compliances for elastic spheres in contact
according to Mindlin (1949). Truly elastic spheres or discs in-
teract in a nonlinear manner but a linear spring model is useful
for verification of theoretical concepts. It is expected that
nonlinear contact interactions would lead to other qualitative
effects. This topic is currently under investigation by the
authors.

Test Results., The influence of coordination number (i.e.,
system density) on shear displacements generated through
particle rotations can be appreciated from Fig. 5. The figure
shows that the relative magnitude of 1A/ | for all contacts in-
creases dramatically for assemblies as y— 3. Plane assemblies
with coordination number lower than 3 cannot generally be
maintained in static equilibrium. For assemblies with a coor-
dination number close to 3, average particle rotations are
large, reflecting the freedom afforded interparticle deforma-
tions by low system density. Conversely, the magnitude of
average particle rotations reduces to zero as the maximum
coordination number of 6 is approached. In this case, particles
are constrained to the point that their rotations virtually
disappear.
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Fig. 7 Measured Poisson’s ratio » versus coordination number y

A major concept that allows stress-strain relationships for
the considered systems to be developed is obtained in equa-
tions (14). It is through this relationship that the link between
average interparticle displacements and macroscopic strain is
made. Relationship (14) implies that { is a direction-
independent constant. Figures 6(a) and 6(b) plot ratios
85(8)/(e;n;n;) and 85(6)/(e;;t;n;) as polar histograms. It is clear
from the figures that these ratios are direction-independent
and nearly equal for both normal and tangential
displacements and hence verify the fundamental assumption
contained in expression (14).

The Poisson’s ratio expression (18) predicts values of 0 and
1/3 for stiffness ratios 1 and 0, respectively, provided particle
rotations are prohibited. The deviation from predicted values
for assemblies with 3 <y =<6 is shown in Fig. 7. It should be
noted that the predicted values of Poisson’s ratio are generally
lower than measured values from numerical simulations. The
discrepancy is observed to increase with the magnitude of par-
ticle rotations. This component of shear deformations was
essentially neglected in theoretical developments. Theoretical
expressions, therefore, overpredict actual shear stiffness while
correctly predicting bulk modulus. In general, this situation
leads to an underestimate of Poisson’s ratio. Nevertheless,
Fig. 7 shows that as y—6, theoretically predicted values for
Poisson’s ratio emerge. The data on this figure for A=0 is
restricted to tests with y=4.5 corresponding to the range of
stable numerical results. For less dense systems, the number of
particles in unstable configurations was great enough to pre-
vent the entire assembly from approaching static equilibrium
within a reasonable number of calculation cycles.

The results of a series of tests with y=6 and 0<\=<1 are
given in Fig. 8. The data show that relationship (18) gives a
reasonable estimate of Poisson’s ratio for these systems.

Implications to Three-Dimensional Systems

Numerical simulation of two-dimensional assemblies of
discs can be thought of as an analogue to idealized assemblies
of spheres having variable radius and interacting through
linear compliant fixed contacts. Unfortunately, numerical
simulation: of these systems is prohibitively expensive for
assemblies having a statistically meaningful number of par-
ticles. Nevertheless, the theoretical developments leading to
the Poisson’s ratio expression for two-dimensional systems are
analogous to the approach which can be adopted to arrive at a
similar expression for dense three-dimensional assemblies. For

22/Vol. 55, MARCH 1988

0.4r
— theoretical v = 1___’\
03‘ theoretica u_3+/\
— e~ measured
v 02t
O.1F
0
[0} 0.2 0.4 0.6 0.8 1.0

Fig.8 Comparison of measured and theoretical values of Poisson’s ra-
tion » against stiffness ratio A

example, if three-dimensional assemblies of spheres with

isotropic fabric are considered, then E(Q)=1/4x, (D)=,

and the stress tensor expression become:
m,l,

oy="0 | fim,@de ij=1,2,3

4 (19)

Here, dQ = sinBdBd6 corresponding to the unit spherical coor-
dinate system with 0 <8< and 0 <6 <2x. Components of the
normal vector m are related to the unit spherical coordinate
system according to:

n; = sinfsinf
n, = cosf (20)
n, = sinfcosf

Rothenburg and Selvadurai (1981b) have shown that if parti-
cle rotations are negligible, average contact force components
in relation (19) can be equated to the strain tensor according
to:

F(Q) = th, (heyn + (1= Negnmn; )

Substitution of equations (20) and (21) into equation (19) leads
to an expression for Poisson’s ratio as follows:

1-XA @2)

y=
44N
Based on experience from numerical simulation of two-

dimensional systems, it is reasonable to expect that this rela-
tionship is valid for dense assemblies of spheres with a fixed
system of contacts and linear contact interactions. If these
assemblies are restricted to a narrow range of particle sizes,
then dense assemblies would correspond to systems with
v—12. Equation (22) is in agreement with the value of »=1/4
established by Poisson (e.g., Love, 1926) for random
assemblies of spheres with central interactions (i.e., A=0).

i,k,1=1,2,3 (21
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