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Abstract-Poisson’s ratio in generalized Hooke’s law for an isotropic continuum 1s subject to the 
restriction -15 Y 5 0.5. With the exception of recently developed low-density polymer foams, solids 
including granular materials have not been known to exhibit negative Poisson’s ratio. 

This paper is concerned with the verification of constitutive stress-strain relationships proposed by 
Rothenburg ~icromechanics of idealized granular systems. Ph.D. thesis, Carleton University, 1980) 
which describe ma~os~pic behaviour of idealized bonded granular materials by elastic parameters (R 
and v) that are formulated explicitly in terms of microstructural parameters such as interparticle 
stiffness, contact density and average interparticle distance. The theory includes an expression for 
Poisson’s ratio which is a function only of the ratio of tangential (shear) to normal contact stiffness jl. 
A negative Poisson’s ratio is predicted for both planar and three-dimensional random isotropic 
systems when the tangential stiffness is greater than the normal stiffness (i.e. rZ > 1). The results of 
numerical simulation of bonded disc assemblies used to verify constitutive relationships show that 
systems with d> 1 do exhibit negative. Poisson’s ratio. Similar theoretical development are 
summarized for three-tensions random isotropic assemblies of bonded spheres and an analogous 
expression for Poisson’s ratio is presented for these systems. It is noted that while a negative Poisson’s 
ratio is theoreticahy possible, the micromechanical condition for rl > 1 is physically unlikely for 
particles of natural materials. 

INTRODUCTION 

The requirement that strain energy of a linear elastic isotropic solid must remain positive under 
any set of deformations results in well-known bounds on Poisson’s ratio (i.e. -1: Y: 0.5). 
With the exception of certain recently developed low-density polymer foams ]I], materials 
exhibiting a negative Poisson’s ratio have not been observed even though negative values are 
theoretically admissible. This contradiction encourages the search for microstructure which can 
lead to a macroscopically-observed negative Poisson’s ratio effect. In this paper it is shown that 
random isotropic assemblies of spheric+ particles interact~g by means of forces ~~smitted 
through indestructable linear contacts would behave in this unusual manner when the ratio of 
shear to normal contact stiffnesses exceeds unity. 

It appears that a material model similar to the one investigated in this paper was first 
proposed by the early founders of the theory of elasticity (i.e. Navier, Cauchy and Poisson) as 
a reflection of atomistic ideas in the 18th century. Molecules were viewed as particles 
interacting by means of long-range forces. ~epen~ng on the thoroughness of treatment and 
specific assumptions, the model admits a range of elastic stress-strain relationships with l-22 
independent elastic constants (e.g. [2]), Poisson’s theory essentially assumes next-neighbour 
interactions as well as macroscopic isotropy and leads to the conclusion that the resistance to 
shear is 2/5 of Young’s modulus [3]. In modern terminology this, result means that Poisson’s 
ratio is f/4. Failure of this model to explain experimental data on many solids has eventu~ly 
led to the concept of bi-co~~t~~t isotropic materials [Z]. 

Poisson’s assumptions on next-neighbour central interactions and isotropy closely resemble 
microstructure of granular materials. From this point of view it is not surprising that the most 
widely quoted Poisson’s ratio for sands is close to l/4 although the separation of elastic and 
plastic strain in experiments on sand is difficult (e.g. [4]). 

In the model considered in this paper, ,particles are considered to interact not only by means 
of normal contact forces (as in the Poissdn’s model) but, also by means of tangential forces. In 
essence, particles are considered bonded ,at contacts and contact force-interparticle compliance 
relationships are linear with ,independent normal and tangential (shear) stiffnesses. Isotropic 
linear elastic stress-strain rel&tionships for this type of assembly were derived by Rothenburg 
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[S) and it was shown that the Poisson’s ratio of the system depends on the ratio of interp,artick 

tangential to normal stiffness A. When A. is greater than unity, Poisson% ratio is negativa. 

Furthermore, as It approaches infinity Poisson’s ratio tends to -1. In the present paper, this 

result is verified by numerically simulating a two-dimensieanal anaiogrre of the v, 

dimensional System. The expression for PoisSon’s ratio for assemblies of bonded 

somewhat different from the corresponding re~ati~~s~ip of bonded spheres but alI ~~a~~~at~ve 

effects are preserved. Numerica s~rnu~at~~~s are also used to verify concepts annd aSS~~~t~~~S 

~~v~~ved in the derivation of StreSs-~~ra~~ re~at~~~s~~~s in tesmS of rn~~r~rne~~a~~~a~ 

P ters. 

ks of this study suggest Iasw a material with mgative Poissson’s mt$io can be cxmstmcted 
artificially but also explain that natural materials with a aaegative Poissan’s ratio are unlikely 

since the condition that contact tangential stiffness be greater than contact normas Stiffness is 

improbable. Nevertheless, it is possible, as the recent work by Lakes (198739) 0x1 pokymer foams 
has shpown, that other types of microstructm-e may lead to a response characterized by a 

negative PoiSson’s ratio. 

The planar assembiies under study are assumed to ccsnsist of a very large number of bonded 

discs. At the particle level, contact normals, contact vectors and c5ntact forces can be 

associated with each physical contact as Shown in Fig. 1. The srientation and magnitude of 

these quantities are assumed to be position independent within these systems (i.e. they &re 

distributed homogeneously). The assembly microstructure (fabric) can be characterized by 

ksverqe coordination number y and the ~r~e~tat~~~ ~isEr~~~~~~~ of contact woamals E(B), [6; 

and contact lengths, ~~~~ as described by ~5tbenbnrg and ~e~~a~~ra~ [7j and ~atb~rs~ [S’j. The 

~~ordinat~~~ number is defined by y = ~~~~ where A&, represents the total comber of e~~ta~~~ 

within the assembly volume and N the total number of partides. The distr~b~t~~~ ~~~t~~~ E(B) 

can be used to determine the frequency of contact normals falling within the orientational da% 

interval 8 and 5 47 A$ for an infinite, Statistically homogeneous9 system according to: 

It should be noted that for any large but finite System of particles, distr~but~~~ f~~~t~~~s of the 

form (4) are a useful approximation. 

fin this paper, ver~~~ati~n of funda~~~t~~ ~5~stit~t~ve refatiorns is reStricted ts iSct8ropic 

contact tangent he 

a) Son-circular Particle b) Disc-shaped Particle 

Fig. 1. Contact normals. contact vectors 2nd contact forces. 
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assemblies defined by: 
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(2) 

Here l0 represents the average contact length taken from all assembly contacts. 

Average stress tensor 

An average stress tensor in terms of the summation of discrete contact forces and fabric can 
be expressed as: I 

aij = + 2 f Flj i, j = 1, 2 
CEV 

(3) 

Terms 3’; and 1; refer to scalar components of contact forces F and contact vectors f” at contact 
locations (refer to Fig. 1). Equivalent expressions for three-dimensional idealized, granular 
assemblies have been reported by Weber [9], Dantu [lo], Rothenburg [5], Christoffersen et al. 
[ll] and Bathurst [8]. Rothenburg [S] and Rothenburg and Selvadurai [7] have proposed that 
expression (3) is a useful approximation to the stress tensor of continuum mechanics for 
granular assemblies composing a large- but finite number of particles. This equivalency can be 
understood by considering sums of force-contact vector components for many subregions of a 
given assembly volume. Quantities calculated from (3) would be expected to fluctuate from 
subvolume to subvolume. However, as the subdomains increase in volume and number of 
particles within a homogeneous system, these fluctuations can be expected to become smaller 
and smaller. This tendency to a singIe representative average stress femor is assured by the 
~m~sition of the function where each term makes a small ~ntribut~on to 

For finite but large particle systems, the average stress tensor from discrete info~ation is an 
accurate analogue to the stress tensor of continuum mechanics and in the following text they 
are assumed equivalent (i.e. c$ = $). 

An equivalent expression to (3) can be written by considering group averages fT(6,) 
corresponding to a finite number of orientational class intervals. Specifically: 

Here a normalized discontinuous function E(B) is used to describe the orientational 
distribution of contact normals. Assuming an isotropic assembly with 

lim , lim and lim 

relation (4) can be expressed in integral form as: 

Here, the term m, = &IV is introduced for brevity and is used to denote contact density with 
respect to assembly area. The anaiogous relationship for three-dimensional bonded spheres can 
be recovered from relations~ps reported by Rothenb~g [5], Ro~enburg and Selvadurai 



f7, X2] and ~ehrabad~ et al. [IS]. The above expression forms the basis 0% a co~st~~~t~~~ 
relationship for planar assemblies once the link between contact forces and s&ram is 
established. 

Link between average forces and stmin tensor 

The link between contact forces and strain tensor can be made through a linear contact4orce 
displacement law of the form: 

fF? = &lK? 
f: = I&s(s; t b”,) 

(6) 

In these expressions, 9: is the ~e~~~~e normai displacement at the contact ~~~c~ is ~~as~~ed 
with respect to the change in length between particle centres located a distance I apart, Teams 
8: and SC, represent the contribution to relative tangential displacements at the c0ntact due to 
relative translational movement of particle centres and relative particle r0tations. The results of 
numerical simulations have shown that quantities CaC, arc negligibly small for planar assembhes 
with y approaching 6. For these assemblies, particle rotations are heavily constramed and 
normal and tangential forces (fg, fz) are due only to relative normal and %ransSational 
displacements ~3: and 6:. 

It is reasonable to assume that if relative normal and tangential displacement c~rnp~~~~~s are 
averaged over orientational class intervals in the same manner as that described in the previous 
section then, caareruge relative displacement components can be equated to averqe normal and 
tangential contact forces according to: 

‘“@!I> = ~~~~~$~ 9fi XY\_ 

p:(e) = ~~~~~~~ 
\“I 

Wothenburg 151 has proposed that average rdative displacement components can be linked to 
strain tensor E according to: 

Here n = (cos 8, sin e), t = (-sin 8, cos S) and the constant 5 is introduced 
coefficient of proportionaiity. From theoretical considerations Rothenburg 
that for these systems f < I. 

Expression (5) can be rewritten to show the c~nt~~~~t~~~ of average ~orrn~ contact forces 
and average tangential contact forces to average stress tensor: 

Substitution of expressions (7) and (S) into (9) leads to csnstitutive relations of the fosn~ 

oij = i%@&k[ i, j, lit, 1 = 1, 2 (193) 

where : 

In these expressions, parameter A is mtrodu.ced as the ratio of tangential to ~~~~a~ contact 
stiffness (i.e. A = &lk,). 

Bulk and shear moduli for plane isotropic assemblies can be defined as: 
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Direct calculation of integrals defining components of A,, results in equivalent bulk and shear 
moduli defined in terms of micromechanical parameters as follows: 

(13) 

Although the above moduIi contain parameter f; whose vaIue is unspecified, Poisson’s ratio is 
independent of I; and depends only on the ratio of tangential to normal contact stiffness 
accardiog to: 1-il 

v=3+1 (14) 

Examination of the above relationships shows that the admissible range of Poisson’s ratio is 
-15 v-c 1 which is analogous to the admissible range in three-dimensional isotropic elastic 
continuum corresponding to -1 c: v 5 l/2. Relationship (14) shows that for the planar 
assemblies under study, a neg&ue Poisson’s ratio is possible if A. > 1. 

Numerical simulation of bonded disc ussemblies 
General. In the current investigation, numerical simulation of assemblies comprising 1000 

discs was undertaken to verify ~d~e~tal relationships proposed in the preceding text. A 
principal advantage of nurne~~ simulation is that it allows ,aII microscopy info~ation to be 
extracted from the assemblies under study.’ In addition, the ~n~~en~ of ~cromech~i~ 
properties such as stiffness ratio /z can be ,asgssed more readily from these experiments than 
from comparable physical models (i.e. photo-elastic disc assemblies). 

Numerical simulations were carried out using a program &led GLUE which is a 
heavily-modified version of the program BALL originally reported by Strack and Cundall [14] 
and used by them to investigate the micromechanical behaviour of cohesionless disc assemblies. 
Both programs implement a time-finite-difference scheme which solves the system of equations 
modeIIing a dynamic transient mechanical system. The mechanical system can be imagined as a 
network of lumped-mass-dashpot elements in which linear springs connect disc-shaped masses. 
Although the system is dynamic, the transient state approaches a static equilibrium condition if 
loading rates at the sample boundaries are kept low enough that inertial forces are always a 
small fraction of the average contact forces acting through the assembly. Kinetic energy is 
dissipated through the introduction of artificial damping, without which, the approximation to a 
static equilib~um condition would not be achieved. At the be~nning of each calculation cycle, 
force components are applied to the centre of each boundary disc in response to prescribed 
boundary stress conditions. 

Assembly generation 

The assembly used in the current investigation was created by modifying a cohesionless 
assembly of discs first reported by Bathurst (81. The modified assembly comprises a narrow 
range of disc diameters that have been glued together by imposing linear force-displacement 
laws of the form (6) to selected contacts. The resulting as~mbly is shown on Fig. 2 and has a 
(m~mum) c~rdination number of y = 6 and Ned-isotropic ~cros~ucture. The degree of 
microst~ctural anisotropy or o~entational bias in contact normals can be assessed from the 
value of second and fourth-order terms in a Fourier series expression for the distribution 
function E(Q), [5]. The Fourier series function can be expressed as: 

~(8) = $ {l -t a cos2(8 - 8,) + b cos 4(8 - oh)} (15) 

An analytical technique which can be used to extract the value of coefficients of anisotropy a 
and b and directions of ankotropy EJ, and S, from assembly data has been reported by Bathurst 

Egl. 
The microstructure for alI assemblies in the current study is illustrated by the polar 

histog~~s plotted on Figs. 3 and 4. Figure 3 shows that these systems are essentially isotropic 
with respect to the second and fourth-order dis~bution of contact normals (i.e. a, b = 0). By 

es 26-4-S 



Fig. 2. 1000 disc asset&y. 

approximation using 
fourth-order Fourier series 
expression 

E(B) = $1 i- aces a(@ - @,) 

+ bcos 4(@ - @b)) 

CL = 0.007 

b = 0.064 

Fig. 3. Normalized distribution of contact orientations for 1000 disc assembly 
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Fig. 4. Normalized distribution of contact lengths for 1000 disc assembly. 

comparison, Bathurst [S] has generated anisotropic assemblies with coefficients of anisotropy as 
great as a = 0.40 and b = 0.30 by subjecting the same cohesionless assembly to large shearing 
deformations. Isotropic microstructure with respect to the distribution of contact lengths is 
clearly evident from Fig. 4. 

Test program 
A series of numerical simulations was undertaken to verify fundamental assumptions leading 

to bulk and shear moduli expressions and Poisson’s ratio in terms of microstructural 
parameters. 

Bonded assemblies comprising 1000 discs were subjected to biaxial compression by imposing 
at the sample boundary discrete forces approximating the stress state 022 > 0, oll = 0 and 
u12 = cr21 = 0. Under these conditions Poisson’s ratio could be determined by calculating the 
resulting principal strain ratio from displacements recorded at the sample boundary. 

Disc interactions in this investigation were controlled by the linear contact force- 
displacement laws given in expressions (6). The ratio of interparticle stiffnesses was kept 
constant for all contacts but was varied between tests over the range 0 I I % 3. 

Tests results 
A fundamental concept which allows the link between stress and strain to be made through 

micromechanical considerations is contained in relationships (8). Implicit in these expressions is 
the assumption that 5 is a direction-independent constant. Figures 5a and 5b plot ratios 
Gi(ti)/(Eijninj) and SF(O)/(Eijtini) as polar histograms. The data indicate that f values are 
sensibly direction-independent and nearly equal. This fundamental parameter is examined 
further in Fig. 6 by plotting f against a range of particle stiffness ratios. The figure shows that 
the average 5 value calculated from all contacts may be considered to be sensibly equivalent 
over the range 0 5 d 53. 

Superimposed on Fig. 6 are 5 values calculated from measured values for bulk and shear 
mbduli K and G. A similar range of values for C results from this exercise as that determined 
diiectly from measured contact distortions. The figure illustrates that within a small error 
mtirgin, microscale information and fundamental relationships (13) predict similar values for 
th” I; coefficient. A reasonable representative value for I; from these numerical simulations is 
O.T4. The small deviations from this value are considered to be the result of stress-induced 
mqcrostructural anisotropy which is sensitive to the magnitude of interparticle stiffness k,, and 
k,.’ 
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Fig. Sa. Coefficient < from distr~b~~o~ of average normai contact dis~lace~e~~s 6;(e). 

Fig. 5b. Coefficient t from distribution of average tangential contact dis@acements gf(@). 

,,I_--..“- I .-_._L-.. 
0 1 2 

x 

Fig. 5. CoefficienP c versus coiltact sti%ess ratio A. 
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Fig. 7. Displacement fields for disc centres from biaxial comPression tests with variable stiffness 
ratio A. 

Figure 7 shows particle centre displacement fields plotted from Poisson’s ratio tests for 
assemblies with A = 0, 1 and 3. The actual particle displacements have been greatly exaggerated 
since measured strains were typically 1~~1~ 0.005 in these tests. The plots show that the trends 
predicted by Poisson’s ratio expression (14) are visually apparent in measured displacement 
fields. Of particular interest is the test with A = 3 which shows that the predicted negative 
Poisson’s ratio effect is indeed observed. The Poisson’s ratio equation has been tested over the 
range 0~ AS 3 and the results presented on Fig. 8. The figure shows that there is good 
agreement between predicted and directly measured values of V. 

IMPLICATIONS TO THREE-DIMENSIONAL SYSTEMS 
Numerical simulation of two-dimensional assemblies of discs can be thought of as an 

analogue to idealized assemblies of Buiaded spheres having variable radius and interacting 
through linear compliant contacts. Unfortunately, numerical simulation of these systems is 



382 

0.4 
r 

Fig. 8. Comparison of measured and :heeretica? values oi Poisson’s ratio Y against sti?Tnfness ratio X. 

prohibitively expensive for assemblies having a statistically meaningful number of particles. 
Nevertheless, the theoretical developments leading to the Poisson’s ratio expression for 
two-dimensional systems are analogous to the approach which can be adopted to arrive at a 
similar expression for dense three-dimensional assemblies. For example, if three-dimensional 
assemblies of spheres with LwOV~~‘C fabric are considered then E(Q) = I/4rn, p’(a) = IO and the 
stress tensor expression becomes: 

Here da = sin fi dfi d8 corresponding to the unit spherica coordinate system with 0 5 j3 _;= IT 
and 0 5 0 5 2n. Components of the normal vector n are related to the unit sphericaj coordinate 
systems according to: 

az,=sinpsin8 

n,=cosB (17) 

%j = sin /3 cos 8 

Rothenburg and Selvadurai [KY!] have shown that if particle rotations are negligible, average 
contact force components in relation (14) can be equated to the strain tensor according to: 

J;(Q) = &k,{AE,nl+ (I - h)(E:k&pa,&) i, k, I = I: 2, 3 <Bj 

Substitution of (17) and (68) into (16) leads to an expression for Poisson’s ratio as follows: 

1-a 
1/J =zc 

Based on experience from numerical simulation of two-dimensional systems, it is reasonable 
to expect that this relationship is vaiid fos, y dense assem’blies of bonded spheres with linear 
contact interactions. If these assemblies are restricted to z narrow range of particle sizes then, 
dense assemblies would correspond to systems with y+ 12. 

According to Mindlin [15], the initial ratio of tangential to normal stiffness f~gp_ isotropic 
elastic spheres in contact without slip varies over the range 0.5 5 a 5 1. This range corresponds 
80 a macroscopic Poisson’s ratio from eqn (19) of 0 5 Y ~2 0.11. For perfect slip between spheres 
kn contact, a = 0 and eqn (19) gives v = I/4 which is an agreement with Poisson for random 
assemblies of spheres with central interactions. 

Equation (19) offers a micromechanical explanation of why granular assemblies with negative 
Poisson’s ratio are not observed in nature. The requirement that particle contacts be stiffer in 
the tangentiai direction as compared to the normal direction is physically unhkely for patiicles 
comprised of natural materials. 
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NOMENCLATURE 

second and fourth-order coefficients of N 
contact normal anisotropy tc 
contact normal distribution function 
contact force vector 

tj(W 

normal and tangential (shear) contact V 
force components a;, SF, 6; 
distribution of average normal and tan- 
gential (shear) contact forces 
linear normal and tangential (shear) con- 8;(e), 6:(e) 
tact stiffnesses 
distance between centres of particles in 
mutual contact 

E, eij 

contact vector x 
distribution of average contact lengths 6,, eb 
assembly average contact vector length 
contact density (= Mv/V) Y 
number of contacts falling within interval 

% 
o> #ij 

total number of assembly contacts 
a, aij 

5 
contact normal vector 
normal scalar components of unit vector 

total number of assembly particles 
contact tangent vector 
tangential scalar components of unit 
vector 
assembly area (or volume) 
relative normal, translational shear and 
rotational shear contact displacement 
components 
distribution of average relative normal and 
translational shear contact displacements 
strain tensor 
coordination number (= M,/N) 
ratio of contact stiffnesses (= k,/k,) 
second and fourth-order principal direc- 
tions of contact anisotropy 
Poisson’s ratio 
stress tensor 
average stress tensor 
constant relating average relative normal 
and tangential displacements to strain 
tensor 


