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The paper presents a series of theoretical developments and numerical experiments directed at quantifying important 
features of the micromechanical behavior of granular media by introducing average characteristics of fabric anisotropy and 
certain statistical averages of contact forces. The introduced characteristics are explicitly linked to stress through a 
stress-force-fabric relationship. Numerical simulations are used to verify this relationship for plane assemblies and to trace 
the evolution of induced anisotropy in contact orientations and contact forces. It is shown that at large strain the degree of 
anisotropy in contact orientations achieves some limiting value and the macroscopic angle of friction at large strains can be 
expressed directly in terms of this value. Effects of the angle of interparticle friction and magnitude of interparticle stiffness on 
the shear capacity of numerical assemblies at large strain are investigated. 

Nomenclature 

a i j  

a 

a n 

a~,, a t 

A 
b 

E(O),  E(n) 

It, I L / (  

coefficients of contact normal ani- 
sotropy 
second-order coefficient of contact 
normal anisotropy (plane systems) 
(a  ~ aoo at steady-state) 1(0) 
second-order coefficient of average 
normal force anisotropy (plane sys- 10 
terns) 
second-order coefficients of average k n, k t 

tangential force anisotropy (plane 
systems) m v 

( a  n + a t ) / a  M 
fourth-order coefficient of contact n 
normal anisotropy (plane systems) n c 
contact normal distribution func- N 
tion N 
contact force vector, normal and 
tangential (shear) contact force vec- 
tor components 
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/n(O), ~(0) 

V, V 

t c 

0 

R 

T 

distribution of average normal and 
tangential (shear) contact forces 
average normal contact force 
contact vector, contact vector 
length = distance between centre of 
particle and surface contact 
distribution of average contact 
length orientations 
assembly average contact vector 
length 
normal and tangential contact stiff- 
nesses 
M / V ,  contact density 
total number  of assembly contacts 
unit vector 
contact normal vector 
total number  of assembly particles 
symmetric second-order  average 
normal force tensor 
contact tangent vector 
average particle radius 
symmetric second-order fabric ten- 
sor 
symmetric second-order deviator 
average tangential force tensor 
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V 

"v 

' t  

T 

oo 

of 

(7, Oij 
o., o t 

assembly area (or volume) 
'11 + '22, volumetric strain 

ff(£11-- '22) 2 "~ ('12 "q" '21) 2, devia-  
toric strain 
M / N ,  coordination number (T 
-/~ at steady-state) 
second-order principal direction of 
contact anisotropy (plane systems) 
second-order principal direction of 
average normal contact force ani- 
sotropy (plane systems) 
second-order principal direction of 
average tangential contact force an- 
isotropy (plane systems) 
stress tensor 
normal and deviatoric invariants of 
stress tensor 
interparticle friction coefficient (i.e., 

specific volume 

Introduction 

It is well known that an understanding of the 
micromechanical response of granular media is 
fundamental to the understanding of the macro- 
scopic behavior of these systems during shear de- 
formations. Of primary importance are relation- 
ships between the distribution of externally ap- 
plied forces, which act at the boundaries of a 
granular assembly, and the microstructure (or 
fabric) and distribution of interparticle forces that 
evolves in response to boundary distortions. 

Expressions that relate stress as used in con- 
tinuum mechanics approaches to microfeatures of 
granular media are unmanageable if discrete infor- 
mation is considered directly. Recently, Rothen- 
burg (1980) and Rothenburg and Bathurst (1989) 
have proposed a stress-force-fabric relationship 
for idealized planar assemblies that relates average 

stress in the assembly to fundamental parameters 
that are explicitly related to statistical averages of 
fabric and interparticle load transmission. The 
proposed relationship provides a clear link be- 
tween shear-induced fabric anisotropy and aver- 
age stress in planar granular assemblies. 

The current study shows that for two-dimen- 
sional systems the contributions to average stress 
tensor can be equated directly to invariant quanti- 
ties associated with a fabric tensor R and two 
force tensors N and T describing the distribution 
of average normal and tangential contact forces in 
the assemblies. 

Unfortunately, physical data reported in the 
literature is incomplete from the point of view of 
verification of s tress-force-fabric relationships 
proposed in earlier work by the authors. In order 
to assess the accuracy of the proposed relation- 
ships, the results of numerical simulation of as- 
semblies of 1000 discs subjected to shearing defor- 
mations are used. The influence of micromechani- 
cal properties on macroscopic behavior and the 
magnitude of coefficients describing anisotropy in 
these systems is explored. Finally, the paper pre- 
sents the empirical observation that the steady- 
state mobilized angle of friction ¢~ is related to 
fabric anisotropy in the assembly according to the 
relationship sin ff~ =/L0a ~. Here, the coefficient 
a~ is a direct measure of limiting fabric ani- 
sotropy at large strain and it is equal to a devia- 
toric invariant quantity of the fabric tensor R at 
steady-state (i.e. at constant volume). Further- 
more, it is shown that the limiting value of the 
coefficient of proportionality/~0 is essentially in- 
dependent of the magnitude of interparticle fric- 
tional capacity and interparticle stiffness. 

Theoretical background 

Discrete quantities of interest at the micro- 
mechanical level of description are illustrated in 
Fig. 1. Interparticle load transfer between particles 
can be described by a contact force fc  when 
particles interact through point contacts. Ani- 
sotropy in microstructure (fabric) can be related 
to statistical distributions of quantities n c and I c 
denoting the unit vector orthogonal to the contact 
tangent plane (contact normal)  and a contact vec- 

tor describing the line drawn from the centroid of 
a contacting particle and the contact point 
(Rothenburg and Selvadurai, 1981). In this scheme 
every physical contact contributes two contacts to 
the system and a vector pair n c, ! ~ and re. The 
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o 
tangent plane ~o 

a) Non-spherical particle 

7 
nab 

b) Spherical particle 

Fig. 1. Contact normals, contact vectors and contact forces. 

and an infinite assembly is considered, then ex- 
pression (1) can be approximated by: 

o , j=mofv f i (n ) - l j ( n )E(n )  dn (2) 

Term m o = M / V  above denotes contact density. 
Expression (2) was originally reported by Rothen- 
burg (1980) and can also be recovered from gen- 
eral expressions reported by Mehrabadi et al. 
(1982). For a granular assembly comprising 
spherical or near-spherical particles and a narrow 
size-distribution the above expression can be sim- 
plified to: 

density of particle packing can be related to aver- 
age coordination number defined as y = M / N  
where M is the total number of contacts and N is 
the number of particles comprising the sample 
volume. 

The average stress tensor acting through a 
granular assembly can be explicitly described in 
terms of quantities fc  and ! C according to: 

= m j o f v f i ( n ) n j E ( n  ) dn (3) °ij 

where i (n)  = 10 = r0- For assemblies comprising 
spherical particles with a narrow size range, con- 
tact density can be equated to coordination num- 
ber using: 

37 
m ~ -  4~r~3v (4) 

1 
o,j = --~ E f, Yl~ i, j = 1, 2, 3 (1) 

cEV 

Here, v denotes assembly specific volume. 

Term V in this expression represents the volume 
of the system. Expression (1) can be determined 
from conditions of static equilibrium in these sys- 
tems and has been reported elsewhere (e.g., Weber 
(1966), Dantu (1968), Rothenburg (1980) and 
Christoffersen et al. (1981) amongst others). 

Analytical developments are greatly facilitated 
if spatially homogeneous assemblies comprising a 
very large number of contacts and particles are 
considered. If this is done, then discrete quantities 
in (1) can be replaced by certain continuous distri- 
butions. For example, the distribution of contact 
normal orientations can be described by a func- 
tion E(n)  such that the fraction of all assembly 
contact normals falling within the orientation in- 
terval dn is E(n)  dn (e.g., Home  1965). Similarly, 
distributions describing the distribution of aver- 
age forces ~ (n) and average contact yector lengths 
lj(n) can be used in expression (1) provided that 
they are uncorrelated with E(n).  If this is done 

Fabric description 

The normalized distribution of contacts in 
granular systems can be described by a three-di- 
mensional symmetric second-order fabric tensor 
R. Components of the tensor can be calculated on 
the basis of discrete information using: 

1 
Rij= -V E ninj  ( 5 )  

cEv  

An equivalent expression for infinite assemblies 
is: 

Rij = mv f v E (  n )nin j dn (6) 

Similar quantities have been proposed by Satake 
(1978), Oda et al. (1982), Mehrabadi et al. (1982) 
and Kanatani (1984) to describe contact distribu- 
tion data in granular systems. It is convenient to 
consider expressions for E(n)  which can be visual- 
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ized as three-dimensional surfaces with certain 
axes of symmetry. The general form of these ex- 
pressions is: 

1 {1 +aijninj} , E ( , , ) =  a i j  = a j~ ,  a k k  = 0 

(7) 

Coefficient terms in (7) have important physical 
meaning since they can be equated directly to the 
assembly fabric tensor R. For an isotropic assem- 
bly, coefficient terms are zero and E(n)= 1/4"~. 
Coefficient terms ajj can be calculated directly 
from measured data using relationships (5), (6) 
and (7). 

Two-dimensional granular systems 

Despite the simplifications introduced above 
for assemblies of spherical or near-spherical par- 
ticles, very little data for measured fabric is availa- 
ble in the literature and none for the distribution 
of average force ~(n) .  However, the stress rela- 
tionships (2), (3) and fabric expressions (5), (6) 
and (7) have a two-dimensional analogue (e.g., 
Ro thenburgand  Bathurst, 1989). Specifically, the 
stress relationship (3) for circular or near-circular 
particle assemblies with a narrow size-distribution 
becomes: 

Coefficients a and b are invariant quantities de- 
scribing second and fourth-order anisotropy in the 
distribution of contact normal orientations. Terms 
0, and 0 b represent principal directions of contact 
normal anisotropy. The value of the coefficient 
term a is a deviatoric invariant quantity of the 
second-order fabric tensor R and 0 a is an eigen- 
vector of this tensor. Coefficient a and the prin- 
cipal direction 0a can be determined from discrete 
data by equating E(O) to the fabric tensor R as 
outlined in the previous section. Similar relation- 
ships exist between the fourth-order term b and O h 
in expression (10) and a symmetric fourth-order 
fabric tensor. However, detailed analysis of data 
from experiments on assemblies of photo-elastic 
discs reported by Konishi (1978) showed that no 
improvement in fit was achieved by considering 
terms higher than fourth-order in expression (10) 
(Bathurst, 1985). 

The average contact force acting at contacts 
with orientation 0 can be decomposed into an 
average normal force component fn(0) and an 
average tangential (or shear) force component 
ft(O) (e.g., Rothenburg and Selvadurai, 1981, 
1985). Hence: 

,4(o) =L(0)n, + (o)ti (11) 
If this is done then expression (8) can be rewritten 
a s i  

- fo 2"rr- oij = mvl o f,(O)njE(O) dO i, j = 1, 2 (8) 

Similarly, the distribution of contact normal 
orientations is: 

1 
E(O) = ~ {1 + aijninj ), a i j  = aj i  , a k k  = 0 

(9) 

Here n = (cos 0, sin 0). Equivalently, E(O) can be 
expressed as a Fourier series. If fourth-order con- 
tact fabric is also included then the following 
Fourier series expression can be used to describe 
fabric in these systems (Rothenburg, 1980): 

1 {l+acosZ(O_Oa) E(0) = 4 

+ b  cos 4(0 - Oh) } (10) 

o,j = mjofo2~ { fn(O)nin j +jt(O)tinj}E(O)dO 

(12) 

Here t = ( - sin 0, cos 0) and represents directions 
orthogonal to n. Rothenburg (1980) has proposed 
that distributions for average contact force com- 
ponents in two-dimensional particulate systems 
may be represented by Fourier series expressions 
of the form: 

)~(0)  =)~{1 + a ,  cos 2(O-Of)} (13) 

f t ( 0 )  =)~{ ao~ - a, sin 2(0 - 0,)} 

For isotropic assemblies, f0 is a constant repre- 
senting the average normal force over all contacts 
in the assembly. For anisotropic assemblies, where 
the number of contacts in different orientations 
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varies, )~ is the measure of average normal con- 
tact force when all groups are given equal weight, 
i.e.: 

fo = fo2~,,(O) dO (14) 

Terms a , ,  a~, and a, are non-dimensional coeffi- 
cients of contact force anisotropy. Similar to 0 a and 
0 b in eqn. (10), terms 0 I and 0 t represent preferred 
directions for contact force distributions and are 
called major principal directions of contact force 
anisotropy. Moment equilibrium for these systems 
requires that: 

f02 
"Ir - 
ft(O)E(O) dO = 0 (15) 

The constant term a~ in expression (13) for f t (0)  
is required to satisfy the general case of non-coin- 
cidence of tangential contact force anisotropy and 
anisotropy in contact normals. Physically, non-zero 
values of a~, correspond to a situation in which a 
non-symmetrical distribution of shear contact 
forces is required to compensate for a lack of 
contact normals in the direction of maximum 
loading. 

Similar to the relationship between E(O) and 
fabric tensor R, the distributions for average force 
components in(0) and i t (0 )  can be equated to 
average normal and average tangential contact 
force tensors N and T. Here T is a deviator 
tensor. Again, coefficient terms are invariant 
quantities of these tensors and directions of ani- 
sotropy are principal directions (eigenvectors) of 
these tensors. Hence, these quantities can be de- 
termined using the following approximations: 

NiJ=2-4~l fo2~n(O)ninjdO= ~-Zf~ninJs eg 

1 r 2 ~  - 1 -c 
Tij= 2--~ Jo ft( O)tinj dO= -~- Y'.ft t,nj 

gog 

(16) 

The term Ng represents the number of orientation 
intervals used in the approximation and Og the 
group orientation. 

Stress-Force-Fabric relationship for plane sys- 
tems 

If directions of anisotropy in equations (10) 
and (13) are coincident (i.e., 0~= Of= 0,) and 
fourth-order terms in (10) are neglected then in- 
tegration leads to average stress components ex- 
pressed as: 

{ aan } ol, = p  1 + --g- + + a .  + 6 , )  cos(20o) 

{ aa. } o22 = p  1 + - - ~  - ½(a + a,, + a , )  cos(2Oa) 

0,2 = O21 = p { ½ ( a  + a, + at) sin(2Oa) } 

(17) 

where: 

moioL 
P = 2 (18) 

Invariants of the average stress tensor in the form 
of parameters of the Mohr circle of stress are as 
follows: 

% = 2 - p  1 + (19) 

~ (  (i,11 _ O-22 )2 
o,--- ~- +0?2 = P ( a + a . + a , )  (20) 

The ratio of the above two invariants is indepen- 
dent of the number of contacts and is as follows: 

o, l ( a + a , + a , )  
- - =  °n ( 1 + --~--a"a) (21) 

The latter quantity is frequently associated with 
the mobilized angle of friction for cohesionless 
material (i.e., sin ~ = 0,/%). Note however, that 
the derived relationships are for any plane granu- 
lar assembly of discs, irrespective of specific types 
of particle interactions. This relationship relates 
characteristics of microstructural response with 
the level of deviatoric load. For brevity, expres- 
sion (21) can be referred to as the s tress-force-  
fabric relationship. Analysis of physical data re- 
ported in the literature shows that coefficient terms 
a, a n are small for circular particles and hence no 
significant loss in accuracy results if product terms 
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are neglected. If this is done the following concep- 
tually simple relationship emerges: 

o, 
- a ( a + a , + a , )  (22) o, 2 

Expression (22) was originally reported by 
Rothenburg (1980) and verified on the basis of 
numerical simulation of a biaxial compression test 
reported by Bathurst (1985) and Rothenburg and 
Bathurst (1989). This expression reveals that for 
the planar assemblies under study the shear capac- 
ity of the system is directly proportional to the 
sum of contributing anisotropy in contact normals 
(i.e., fabric) and anisotropy in the distribution of 
average normal and average tangential contact 
forces that evolves in response to deviatoric load. 
The current paper  extends the earlier work by the 
authors to examine the influence of the magnitude 
of micromechanical properties on the relative con- 
tributions of coefficients of anisotropy to assem- 
bly shear capacity and explores empirically ob- 
served relationships between components of sys- 
tem anisotropy. 

111 

T 
Fig. 2. A 1000 disc assembly. 

Contact force-displacement relationships 

Numerical simulation of planar assemblies of discs 

General 

Numerical experiments in this study were origi- 
nally described by Bathurst (1985) and were car- 
ried out on assemblies comprising 1000 discs such 
as that shown on Fig. 2. The test assemblies were 
subjected to different load paths by applying 
boundary forces to perimeter discs corresponding 
to a prescribed average stress field. The simula- 
tions were carried out using a computer program 
called DISC. The program implements an explicit 
time-finite-difference scheme which solves the sys- 
tem of equations modelling a dynamic transient 
mechanical system. The loading rate and damping 
parameters are selected such that inertial forces in 
these numerical experiments are negligibly small. 
The finite-difference scheme is identical to that 
reported by Cundall and Strack (1979) and has 
also been used in similar numerical simulations 
reported by the authors for assemblies of bonded 
discs (Bathurst and Rothenburg, 1988a,b). 

In the current study, the particles are assumed 
to transmit force through compliant point con- 
tacts that interact according to a no-tension e!as- 
t ic-plastic Coulomb friction law. Over the elastic 
range the contacts are assumed to interact linearly 
as follows: 

f~ = kn A'~ 
A c 

l f tC=kt~[  ~ (23) 

Here term A~ n is the normal displacement at a 
physical contact which is measured with respect to 
the change in length between particle centers 
located a distance 1 apart. Term a~ refers to 
tangential (shear) contact displacements. Parame- 
ters k n and k t are normal and tangential interpar- 
ticle stiffnesses and in this paper  are assigned 
magnitudes such that k n / k  t = 1 for all particles. 
Interparticle shear forces are restricted by a 
Coulomb-type friction law such that: 

I f t " l ~ f d #  (24) 

where/~ represents the interparticle friction coeffi- 
cient. For comparison purposes all particle con- 
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tacts in an assembly were assigned constant values 
of interparticle friction coefficient over the range 
0 ~ # ~< 0.5. Truly elastic particles in three-dimen- 
sional assemblies can be expected to interact in a 
non-linear fashion (Mindlin, 1949). In real sys- 
tems, non-linear interactions may be due to surface 
asperities or slight irregularities in particle shape. 

Nevertheless, a linear model offers simplicity and 
can provide insight into the link between micro- 
mechanical properties and macroscopic behavior. 
Furthermore, the stress-force-fabric relationships 
(21) and (22) that are the principal focus of this 
investigation are independent of the form of the 
contact model adopted. 
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All tests were carried out using an initially 
dense isotropic assembly (i.e. a = 0, b = 0 and 
3' = 4) made up of 20 different disc radii with a 
narrow range of particle sizes (i.e. 0.78 ~< r / ?  o <~ 
1.29). The initial assembly was also isotropic with 
respect to average contact lengths (i.e. l(O) = i 0 --- 
?0) and this distribution did not change during 
subsequent shearing deformations. The assemblies 
were subjected to biaxial compression and pure 
shear following compaction under the same hy- 
drostatic stress condition. A pure shear test refers 
to a stress path in o t, % space where the initial 
hydrostatic stress state is maintained constant dur- 
ing boundary shearing deformations. During 
numerical simulations the direction of maximum 
principal stress was maintained constant at 8 a = 
~r/2 for biaxial compression tests and at 8a = ~r/4 
for pure shear tests. 

General behavior 

The results of a series of biaxial compression 
tests are summarized on Fig. 3. The tests were 
carried out with two different values of interpar- 
ticle stiffness and three values of interparticle fric- 
tion coefficient. The following general observa- 
tions can be made: At low levels of strain the 
samples were observed to behave in a linear elastic 
manner and hence the initial bulk and shear mod- 
uli of the assemblies were directly ~controlled by 
the magnitude of contact stiffness assigned to the 
particles. After the assemblies became unlocked 
and relatively mobile under post-peak shear defor- 
mations the magnitude of normalized shear capac- 
ity and rate of dilatancy appeared to be essentially 
independent of interparticle stiffness (Fig. 3a). 
The influence of interparticle friction coefficient 
(/~) on macroscale behavior can be seen in Fig. 3c. 
In general, the normalized shear capacity and rate 
of dilatancy were observed to diminish with de- 
creasing interparticle frictional capacity. 

Figures 3b and 3d show the evolution of aver- 
age coordination number during shearing defor- 
mation in these tests. In general the coordination 
number of the assemblies was seen to decrease 
with strain and this observation is consistent with 
sample dilatancy observed at the macroscale. At 

the beginning of each test the rate at which con- 
tacts were lost is large. This initial behavior is due 
to elastic unloading of the systems prior to the 
assemblies becoming unlocked and does not re- 
flect any significant spatial rearrangement of the 
particles. The definition of a contact adopted in 
this investigation is that a contact exists if it 
transmits load. This definition assures that coordi- 
nation number is sensitive to elastic unloading. As 
the interparticle stiffness or friction coefficient 
was increased the limiting value of coordination 
number that could be sustained by the assemblies 
under quasi-static conditions was seen to decrease. 
From consideration of static equilibrium it can be 
shown that the minimum admissible value for 
coordination number 7 is 3. In qualitative terms, 
as interparticle stiffness and interparticle frictional 
capacity increases the combination of interparticle 
contact forces available to maintain the assembly 
in static equilibrium increases and therefore a 
lower coordination number is possible for a given 
value of contact anisotropy. As expected, the test 
results show that in the limit of frictionless par- 
ticles (/~ = 0) the numerical assemblies were non- 
dilatant and incapable of developing significant 
fabric anisotropy or reduced coordination number 
below the initial state. 

The end of each test was characterized by a 
steady-state condition in which volumetric strain, 
density and shear strength became constant. In 
soil mechanics terminology this condition corre- 
sponds to critical state. From a micromechanical 
point of view careful observation of the numerical 
assemblies at steady-state revealed that at this 
stage in a test the growth and collapse of predomi- 
nant load-carrying chains of particles occurred at 
about the same rate and all statistical parameters 
describing the intensity of particle packing (e.g. "¢, 
rn~), anisotropy in contact forces (i.e. a n, at) and 
fabric (i.e. a) remained unchanged. 

Figure 4 presents similar data from the results 
of pure shear tests. A noticeable macroscopic dif- 
ference in mechanical behavior is that the pure 
shear tests generally exhibit greater post-peak 
strain softening than the comparable biaxial com- 
pression tests. For the same micromechanical 
properties the pure shear and biaxial tests re- 
flected characteristics of the macroscopic behavior 
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interparticle stiffness), (c) stress-strain response (variable interparticle friction coefficient) and (d) coordination number (variable 
interparticle friction coefficient). 

of many  actual granular materials which exhibit 
dilatancy rate and critical state densities that are 
suppressed with increasing normal stress. 

E v o l u t i o n  o f  a n i s o t r o p y  in  m i c r o f e a t m ' e s  

Normalized distributions for contact normals 
and average interparticle force components with 

respect to group orientations taken at peak shear 
strength in a biaxial compression test and pure 
shear test are illustrated in Figs. 5 and 6. The 
measured data is presented together with the ap- 
proximations to the distributions using Fourier 
series expressions (10) and (13) introduced earlier 
but limited to second-order terms. The coefficients 
of anisotropy and directions of anisotropy have 
been determined using tensorial relationships (6), 
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(16). The figures show that the approximations 
appear to visually well-represent the measured 
data. The range of values for coefficients a and a ,  
calculated from these numerical simulations was 
similar to that interpreted by Bathurst (1985) from 
the results of tests on photo-elastic discs reported 
by Oda and Konishi (1974b) and Konishi (1978). 
In the current study, it can be seen that directions 
of anisotropy are essentially coincident with the 

direction of maximum principal stress. In all tests, 
regardless of stress path, coincidence of force, 
fabric and stress tensors was observed at all stages 
in a test even for assemblies subjected to stress 
rotations. The explanation for this observation is 
that normal forces are controlled directly by the 
average stress tensor in the assembly and since the 
distribution of contacts is defined by contacts that 
actively transmit force then the coincidence of 
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stress, force and fabric tensors is assured. The 
coincidence of contact normal distributions and 
average shear forces was also reflected in the 
observation that calculated values for coefficient 
term a,o were essentially zero at all stages during 
shearing deformations. The coincidence of quanti- 
ties describing the preferred direction of contact 
normals in photo-elastic disc experiments and the 
direction of maximum loading has been noted by 
Oda and Konishi (1974a,b). The results of our 
tests with frictional contacts have shown that there 
is a progressive loss in the number of contacts 
oriented in the direction of minimum principal 
stress (i.e., the direction of tensile strain) and it is 
this loss of contacts or des t ruc tur ing  in  preferred 
directions that generates fabric anisotropy in these 

systems. This phenomenon has been noted in both 
physical experiments and in previous numerical 
simulations reported by the authors and others 
(e.g., Oda and Konishi, 1974a; Cundall et al., 
1982, Rothenburg and Bathurst, 1989). 

Verification of s tress - force- fabric  relationship 

Figures 7a and 7b show the evolution of coeffi- 
cients of anisotropy a, a .  and a t describing the 
intensity of anisotropy in fabric (contact normals) 
and average force components during biaxial com- 
pression and pure shear. In general the tests show 
that the maximum value of normal contact force 
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anisotropy occurred at about the same point in the 
test as the measured peak shearing resistance but 
diminished thereafter. The magnitude of ani- 
sotropy in tangential contact forces a t was signifi- 
cantly lower than a ,  over the course of each test 
and was seen to increase rapidly during elastic 
compression but to diminish steadily as the system 
became unlocked and particle mobility increased. 
During the biaxial compression test a constant 
level of contact normal anisotropy was sustained 
during sample dilation as a consequence of the 
progressively higher level of average normal stress. 
A similar sustained level of contact normal ani- 
sotropy can be interpreted from data reported by 
Biarez and Wiendiek (1963) from biaxial compres- 
sion tests carried out on assemblies of planar 
particles. By comparison, the pure shear test in 
this investigation exhibited diminishing fabric ani- 
sotropy as the sample approached steady-state. 

Superimposed on the figures are measured val- 
ues of invariant stress ratio ao = a t / a  . and theo- 
retical approximations to these curves using ex- 
pression (22). The approximations and measured 
values for normalized shear capacity are very close. 
It should be noted that the difference in the curves 
would virtually disappear if the full expression for 
the invariant stress ratio was used (i.e. eqn. (21)). 
Similar accuracy has been reported by Bathurst 
(1985) for tests having a wide range of interpar- 

ticle properties and subjected to a variety of stress 
paths. It appears from Fig. 7 that the major con- 
tribution to mobilized shear strength in these as- 
semblies at all strain levels is due to anisotropy in 
normal contact forces plus stress-induced ani- 
sotropy in fabric (contact normals). The direct 
contribution of interparticle shear force during 
shear deformations can be seen to vary from about 
25% during initial elastic deformation of the sam- 
pies to about 11% of the total capacity of the 
assemblies at steady-state. 

The relative values of a ,  and a t confirm the 
visual impressions reported in an earlier paper by 
the authors (Rothenburg and Bathurst, 1989) that 
load transfer is largely due to interparticle forces 
that act normal to the contact plane. Detailed 
measurements of the mobilized interparticle shear 
capacity showed that even in directions with peak 
tangential shear force )~(0) the mobilized coeffi- 
cient of friction was never greater than 30% of 
interparticle frictional capacity. The absence of 
fully-mobilized friction in sheared two-dimen- 
sional assemblies of discs has been noted by Oda 
and Konishi (1974a) from the results of physical 
experiments with photo-elastic discs. A conspicu- 
ous absence of oblique contact forces between 
discs is also apparent from similar physical experi- 
ments reported by De Josselin De Jong and Ver- 
ruijt (1969). 
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Influence of interparticle properties on anisotropy 
components 

Figures 8 and 9 summarize peak and steady- 
state values of coefficient terms a, a, ,  a t and 

normalized shear strength a o  determined from the 
results of numerical simulations on discs having a 
range of interparticle friction coefficient /x. A 
comparison of the data shows that generally higher 
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coefficient values were observed during the biaxial 
compression test as compared to the pure shear 
test. This difference indicates that anisotropy in 
these systems is sensitive to the magnitude of 
average confining stress. As o, increased, the as- 
semblies under investigation were better able to 
sustain higher levels of anisotropy in fabric and 
force components. Comparison of mobilized fric- 
tion angle reveals that for the assemblies subjected 
to pure shear the steady-state value of mobilized 
friction angle (/)mob was essentially independent of 
interparticle friction coefficient for (say) /~ > 0.1. 
This observation supports in part the somewhat 
controversial observation advanced by Skinner 
(1969) that under shearing deformations at con- 
stant confining pressure the macroscopic shearing 
resistance of ballotini is independent of interpar- 
ticle friction angle. Careful analysis of mobilized 
interparticle shear capacity in numerical simula- 
tions showed that a small portion of the available 
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shear capacity was mobilized at peak and steady- 
state. This observation is supported by direct mea- 
surement of mobilized friction angle reported by 
Oda and Konishi (1974a) for assemblies of 
photo-elastic discs and explains the generally 
non-linear relationship between the interparticle 
friction coefficient and macroscopic shear capac- 
ity in both series of tests. The micromechanical 
explanation for this phenomenon is that only a 
finite portion of interparticle shear force capacity 
is required to develop the limiting values of ani- 
sotropy in fabric and normal contact forces ob- 
served at steady-state. Large interparticle shear 
capacity, even if available, is not mobilized in 
these systems at large strain since the constituent 
discs have great rotational freedom due to low 
contact density and will shed high tangential con- 
tact forces as soon as they develop. A qualitative 
explanation of the indirect contribution of inter- 
particle shear capacity to system shear capacity 
can be made by imagining the assembly as com- 
prising chains of load bearing columns. The con- 
tribution of interparticle shear capacity is related 
to the lateral support available to these columns. 

Relationship between parameters of fabric and 
force anisotropy 

Figure 10 plots the ratio A = ( a ,  + a t ) / a  for 
several tests having a range of interparticle prop- 
erties. This data together with the measured reduc- 
tion in coordination number recorded during shear 
suggests that 

A ~ l . 5  for 7 ~ "/~ 

regardless of interparticle stiffness, coefficient of 
friction and stress path for the assemblies under 
study. Here 7oo is equivalent to critical state in soil 
mechanics terminology. In terms of mobilized fric- 
tional capacity this observation together with the 
stress-force-fabric relationship (22) leads to the 
general expression: 

sinq~ =/x0a ~ w h e r e / ~ 0 = ( - ~ -  ) (25) 

It can be easily seen that for these assemblies the 
coefficient of proportionality /x 0 has a value of 
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1.25 at steady-state. Rothenburg et al. (1989) have 
recently proposed that the quant i ty/ t  o represents 
an energy dissipation constant that is an im- 
portant part of a simplified micromechanics-based 
constitutive model for planar assemblies. 

Concluding remarks 

The information presented in the paper empha- 
sizes the fact that shear strength of granular 
materials depends on the ability of the assembly 
to develop anisotropy in contact orientations. The 
outlined theoretical developments and results of 
numerical experiments on plane granular assem- 
blies show that there is an explicit link between 
the angle of friction at large strain and a parame- 
ter describing the limiting degree of anisotropy. 

Most theoretical results presented in the paper 
are for the special case of plane assemblies of 
particles although the general expression for the 
stress tensor is equally valid for 3D assemblies of 
arbitrary shaped particles. Limited data on the 
development of anisotropy in sands indicate trends 
similar to plane assemblies although the degree of 
anisotropy in 3D assemblies appears to be much 
higher (Bathurst, 1985). 

References 

Bathurst, R.J. (1985), A study of stress and anisotropy in 
idealized granular assemblies, Ph.D. Dissertation, Queen's 
University at Kingston, Ontario, Canada. 

Bathurst, R.J., and L. Rothenburg (1988a), Micromechanical 
aspects of isotropic granular assemblies with linear contact 
interactions, J. Appl. Mech. ASME 55, 17. 

Bathurst, R.J., and L. Rothenburg (1988b), Note o n  a random 
isotropic granular material with negative Poisson's ratio, 
Int. J. Eng. Sci. 26 (4), 373. 

Biarez~ J. and K. Wiendieck (1963), La comparaison qualitative 
entre I'anisotropie m&:anique et l'anisotropie de structure 
des milieux pulv6rulents, Acad. Sci. C. R. 256, 1217. 

Christoffersen, J., M.M. Mehrabadi and S. Nemat-Nasser 
(1981), A micromechanical description of granular material 
behaviour, J. Appl. Mech. Trans. A S M E  48, 339. 

Cundall, P.A. and O.D.L Strack (1979), A discrete numerical 
model for granular assemblies, G~otechnique 29 (1), 47. 

Cundall, P.A., A. Drescher and O.D.L. Strack (1982), Numeri- 
cal experiments on granular assemblies; Measurements and 

observations, IUTAM ConL Deformation and Failure of 
Granular Materials, Delft, A.A. Balkema, Rotterdam, p. 
355. 

Dantu, P. (1968), 15-tude statistique des forces intergranulaires 
dans un milieu pulv6rulent, G~otechnique 18 (1), 50-55. 

De Josselin de Jong, G. and A. Verruijt (1969), Etude photo- 
elastique d'un empilement de disques, Can. Grpe Etude. 
Rheol. 2, 73-86. 

Home, M.R. (1965), The behaviour of an assembly of rotund, 
rigid, cohesionless particles I & II, Proc. R. Soc. London 
286, 62. 

Kanatani, K. (1984), Distribution of directional data and fabric 
tensors, Int. J. Eng. Sci., 22 (2), 149-164. 

Konishi, J. (1978), Microscopic model studies on the mechani- 
cal behaviour of granular materials, in: S.C. Cowin and M. 
Satake, eds., Proc. U.S.-Japan Seminar on Continuum- 
Mechanical and Statistical Approaches in the Mechanics of 
Granular Materials, Tokyo, Gakujutsu Bunken Fukyukai, 
Tokyo, Japan, p. 27. 

Mehrabadi, M.M., S. Nemat-Nasser and M. Oda (1982), On 
statistical description of stress and fabric in granular 
materials, Int. J. Nunt Anal. Meth. Geomech. 6, 95. 

Mindlin, R.D. (1949), Compliance of elastic bodies in contact, 
J. Appl. Mech. ASME 16, 259. 

Oda, M. (1972), The mechanism of fabric changes during 
compressional deformation of sand, Jpn. Soc. Soil Mech. 
Found, Eng. 12 (2) 1. 

Oda, M. and J. Konishi (1974a), Microscopic deformation 
mechanism of granular material in simple shear, Jpn. Soc. 
Soil Mech. Found. Eng. 14 (4) 25. 

Oda, M. and J. Konishi (1974b), Rotation of principal stresses 
in granular material in simple shear, Jpn. Soc. Soil Mech. 
Found. Eng. 14 (4) 39. 

Oda, M., S. Nemat-Nasser and M.M. Mehrabadi (1982), A 
statistical study of fabric in a random assembly of spherical 
granules, Int. J. Num. Anal. Meth. Geomech. 6, 77. 

Rothenburg, L. (1980), Micromechanics of idealized granular 
systems, Ph.D. Dissertation, Carleton University, Ottawa, 
Ontario, Canada. 

Rothenburg, L., and R.J. Bathurst (1989), Analytical study of 
induced anisotropy in idealized granular materials, 
G$otechnique 39 (4), 601. 

Rothenburg, L., and A.P.S. Selvadurai (1981), A micromecha- 
nical definition of the Cauchy stress tensor for particulate 
media, in: A.P.S. Selvadurai, ed., Proc. Int. Syrup. on the 
Mechanical Behaviour of Structured Media, Ottawa, 
Ontario, Canada. Elsevier, Amsterdam. 

Rothenburg, L., and A.P.S. Selvadurai (1985), Anisotropic 
fabric of plane granular assemblies and elements of their 
mechanical response, in: J.-P. Boeb.ler, ed., Plastic Behaoior 
of Anisotropic Solids, Proc. CNRS International Col- 
loquium 319, 1981, l~ditions du Centre National de la 
Recherche Seientifique, Paris, p. 29. 

Rothenburg, L., R.J. Bathurst and E.L. Matyas (1989), Mecha- 
nisms of fabric evolution in granular media, In: Proe. 12th 
Conference Int. Soc. for Soil Mech. and Found. Eng., Rio 
de Janeiro, Brazil, A.A. Balkema, Rotterdam. 



80 R.J. Bathurst, L Rothenburg / Stress-force-fabric relations 

Satake, M. (1978), Constitution of mechanics of granular 
materials through the graph theory, in: S.C. Cowin and M. 
Satake, eds., Proc. U.S.-Japan Seminar on Continuum- 
Mechanical and Statistical Approaches m the Mechanics of 
Granular Materials, Tokyo, Gakujutsu Bunken Fukyukal, 
Tokyo, Japan,, p. 47. 

Skinner, A.E. (1969), A note on the influence of interparticle 
friction on the sheafing strength of a random assembly of 
spherical particles, G~otecbnique 19 (1), 150. 

Weber, J. (1966), Recherches concernant les contraintes inter- 
granulaires dans les milieux pulvtrulents, Bull. de Liaison 
Ponts et Chauss~es 20, 3-1. 


