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ABSTRACT

The present study is directed at investigation of relationships between stress and parameters
characterizing properties of microstructure and load transmission in idealized granular systems. Fun-
damental relationships for three-dimensional idealized granular systems are developed using a theoret-
jcal approach similar to that reported by Rothenburg (1980) and Rothenburg and Selvadurai (1981b).
Verification of fundamental relationships is prohibitively expensive using numerical simulation. How-
ever, fundamental expressions have a limited two-dimensional analogue and information necessary for
verification can be obtained more readily from numerical simulation of these systems. The objective
of the study is not to formulate constitutive relationships for idealized granular systems but, rather,
to verify fundamental relationships between stress and microfeatures which must be respected in any
physically realistic continuum model.

The primary method used to investigate theories presented in the study is computer-based numer-
ical simulation of two-dimensional assemblies of discs. The simulation employs a numerical technique
which has been reported by Cundall and Strack (1979). Additional verification of fundamental as-
sumptions in theoretical developments is provided through interpretation of a limited amount of data
from experiments with planar granular assemblies such as those reported by Oda and Konishi (1974a).

Truncated Fourier series expressions of the form originally proposed by Rothenburg (1980) de-
scribing the distribution of contact normal orientations and distributions of average contact force
components are shown to be reasonable approximations to measured data from physical tests and
the results of numerical experiments in the current study. Substitution of distribution functions into
mathematically manageable expressions for stress quantities in the limit of infinite, spatially homoge-
neous two-dimensional granular assemblies results in predicted stress quantities which are within 10%
of directly measured values.

The results of numerical simulations support the hypothesis that system shear capacity is due to
the sum of invariant quantities which measure anisotropy in the orientation distribution of contact
normals, interparticle normal forces and interparticle tangential (shear) forces. Examination of con-
tributing system anisotropies shows that the direct contribution of interparticle tangential forces is
very small. Under monotonic shearing deformations, microstructure evolves such that load-carrying
chains of contacts are oriented in the direction of maximum loading and are characterized by inter-
particle forces with little or no tangential contact force component.

Careful examination of numerical assemblies at an ultimate state (failure) leads to the concept
of steady state of micromechanical behaviour for granular media. Steady state is characterized by
limiting values of invariant quantities describing microstructure and contact force components under
continuing shearing deformations. At steady state, the ratio of normal contact force to contact normal
anisotropy was observed to approach unity for numerical assemblies with a variety of disc properties.
This limiting condition leads to a simple expression for the invariant stress ratio of these systems as
a function of microstructural anisotropy at steady state.

Macroscopically-observed changes in sample stiffness and shear capacity can be traced to changes
in parameters describing system anisotropy when discs with variable disc properties are investigated.
Numerical assemblies with particle stiffnesses and interparticle friction angle considered typical of
actual granular media approach a steady state coordination number predicted for static determinancy
in these systems.

Mathematical developments show that fundamental relationships which equate stress quantities
to microstructure and assembly interparticle forces can be expressed in equivalent tensorial form. Ten-
sorial expressions are expected to retain their form for three-dimensional granular media comprising
spherical or near-spherical particles. Because of this correspondence, implications to three-dimensional
assemblies are drawn from the results of numerical experiments and original (theoretically developed)
fundamental expressions for three-dimensional systems are modified.
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CHAPTER 1
INTRODUCTION

1.1 Introduction

An understanding of the micromechanical response of granular media under static loading is
fundamental to our understanding of the macroscopic behaviour of these systems. Of particular
irﬁportance are relationships between the distribution of externally applied forces, which act at the
boundaries of a granular assembly, and the fabric (or microstructure) and distribution of interparticle
forces which evolve in response to boundary disturbances.

The problem that this study addresses and the micromechanical approach which is adopted to
investigate the problem can be introduced by reference to some interesting laboratory experiments
which have been carried out in recent years by a number of researchers.

For example, De Josselin De Jong and Verruijt {1969) investigated assemblies of photo-elastic discs
as two-dimensional analogues to granular media. In these experiments photo-elastic discs, having a
range of diameters, were stacked between glass plates and loaded through vertical and horizontal
platens. Contact forces at various stages in assembly loading were calculated from the pattern of
isochromatics viewed in polarized light. Figure 1.1a shows an assembly of discs at one stage during
static loading. The dark lines in the figure represent the action of contact forces. The thickness of the
lines are proportional to the intensity of the interparticle forces.

The figure shows that the assembly of discs has evolved a certain particle arrangement {or mi-
crostructure) and a certain distribution of interparticle forces in order to maintain the sample in static
equilibrium with the platen forces acting at the system boundaries. The relationship of microstructure
and contact forces to the boundary loads is visually apparent in the figure. Chains of relatively high
contact forces can be identified which appear to be biased in the direction of the maximum applied
load. If the centres of all mutually loaded discs were connected, then, a network of lines {called
branch lengths) would result which would reflect a similar bias in the microstructure of the sample.
To emphasize this bias, Figures 1.1b and 1.1c plot groups of branch lengths representing interparticle
contacts having vertical or horizontal orientations. Comparison of the figures shows that there are
a greater number of contacts in the vertical direction. The relative number of contacts in these two
groups illustrates a fundamental characteristic of microstructural anisotfopy in this assembly.

Similar anisotropic microstructure can be anticipated for three-dimensional assemblies comprising
rounded sand particles. For example, Oda (1972¢) has plotted the distribution of contact orientations

for sand samples at stages during drained triaxial compression. Figure 1.2¢ shows the distribution




ntacts projected on an equal area stereonet for sand samples at an initial compacted state and

u state close to the peak shear strength for the material. The plots show that the distribution of
ntacts has readjusted under deviatoric loading to maximize contact density at orientations close to

he direction of maximum principal stress.

The geometrical anisotropy identified in the systems above is responsible for anisotropy in all

baerved macroscopic properties for these granular assemblies. However, the processes leading to the

jyfeation of anisotropic structure are complex. In very general and brief terms, these processes are
related to the stability of particulate systems under destabilizing deviatoric loads. A granular material
;will carry load by distributing external forces between interparticle contacts. Whether or not the load
- can be sustained depends on the stability of microstructure under the system of contact forces imposed
upon it. If stability cannot be maintained, granular materials can adjust their system of contacts
and will regulate contact forces internally to satisfy conditions of internal stability. The process of
adjusting contacts to maintain stability results in development of anisotropic microstructure which

partially offsets the destabilizing action of deviatoric loads and reduces the level of contact forces.

Two fundamental questions can be posed at this stage: First, how do we quantify microstructure
and the distribution of contact forces? Secondly, once quantified, how are these parameters related to

the shearing resistance of the sample?

Our ability to answer these questions is hampered by the lack of complete information on the
spatial arrangement of constituent particles and load transmission through these media. Granular
assemblies typically comprise a great number of particles and a corresponding large number of degrees
of freedom. As a result, microfeatures of these systems, including patterns of contact forces and
individual particle movements, are prohibitively complex. Nevertheless, at the macroscale, the entire
system exhibits well defined deformations under uniform external loads. It is this type of behaviour
which is idealized in the notion of stress-strain relations. Within the framework of continuum theories
the existence of stress-strain relationships is a well confirmed postulate which, however, cannot be
taken for granted when macroscale description is attempted based on behaviour at the particulate

level.

From a physical point of view the tendency to a regular response under uniform external conditions
is a statistical trend related to an almost independent behaviour of different large parts of a large
system when significantly separated particles do not affect each other directly. Any large system

essentially behaves as a collection of nearly independent parts which contribute to the overall response

in an uncorrelated manner so that the overall behaviour appears regular as a result of statistical

2
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averaging. From this point of view, macro-descriptors, like stress and strain, must be averages of
microscopic characteristics of a system. For some simple substances like gases, fluids and some solids
the link between macro and micro-descriptors is established in classical statistical physics (Landau and
Lifshitz, 1959). Recently Rothenburg (1980) applied to granular materials some methods routinely
smployed in statistical physics and developed a relationship between stress tensor, averages of contact

forces and averages describing microstructure of granular materials.

1.2 General Objectives and Approach

The objective of this study is to investigate relationships between stress and parameters charac-
terizing anisotropic properties of microstructure and load transmission in idealized grauular systems.
The theoretical basis of this investigation is an approach similar to that reported by Rothenburg (1980) -
and Rothenburg and Selvadurai (1981b). The current study is primarily directed at the verification
of these theoretical developments for assemblies in static equilibrium. However, verification of expres-
sions for three-dimensional systems requires complete information on contact forces and position of all
particles. This information can only be obtained from the results of numerical simulations which, for
three-dimensional systems, is prohibitively expensive. Fortunately, fundamental expressions have a
limited two-dimensional analogue {e.g. assemblies of discs) and information necessary for verification
can be obtained more readily from numerical simulation of these systems and interpretation of a lim-
ited amount of data from experiments similar to those reported by De Josselin De Jong and Verruijt
(1969). The primary method used to investigate theories presented in this study is computer-based
numerical simulation of two-dimensional assemblies of discs. The simulation employs a numerical
technique which involves the solution of equations of motion for all assembly particles. This technique
has been reported by Cundall and Strack (1979a).

The ultimate collective aim of engineering research into the mechanical behaviour of granular
systems is to formulate constitutive relationships for these materials. The current study is not aimed
at this objective but rather concentrates on verifying fundamental relationships between stress and
microfeatures which must be respected in any physically realistic continuum model. Recently, the
task of deriving a micromechanically-based constitutive model has been successfully accomplished
(Rothenburg, 1985). The work reported here is a parallel investigation which serves to verify fun-
damental relationships upon which this recent model is founded. In addition, this study establishes
many qualitative features of microscopic processes in granular materials which help to understand
important macroscopic phenomena (such as the development of critical state and mechanisms of

strain-hardening/strain-softening) and their relationship to physical properties of particles.

5




1.3 Organization

The current study has been organized in the following way:

Chapter 1 introduces the topic of investigation, objectives and presents an outline of the adopted
approach. Some terminology is introduced that is common to micromechanical description of particu-
late media. A literature review is undertaken which includes laboratory investigations and theoretical

developments which are important to the current study.

Chapter 2 presents a phenomenological description of granular materials based on introduction
of the stress tensor as a volume-average of discrete quantities characterizing contact forces and ge-
ometrical features of microstructure. Fundamental descriptors used in this approach are illustrated
based on the results of limited experimental data reported in the literature. Expressions for the stress
tensor are formulated for three-dimensional systems comprising particles of arbitrary shape and size

distribution.

Chapter 3 presents assemblies of material discs as a limited two-dimensional analogue to a three-
dimensional system of particles. Fundamental expressions developed for three-dimensional systems
are further simplified to quantitatively relate the average assembly stress tensor to fabric anisotropy
and to the distribution of average interparticle force components within the assembly. The developed
expressions are assessed from the results of laboratory tests on two-dimensional assemblies of discs

reported in the literature.

Chapter 4 reviews a numerical simulation approach which involves solution of equations of motion
for individual particles. The numerical simulation provides complete information on disc assemblies
which can be used to verify developed theoretical relationships. The technique is implemented through

a computer program DISC which is also described in this chapter.

Chapter 5 reports the results of a series of tests using program DISC which were undertaken to
provide an independent verification of the relationships proposed in Chapter 3 and to gain insight into
the micromechanical behaviour of idealized granular systems. Fundamental aspects of micromechani-
cal behaviour are synthesized based on the results of the two-dimensional numerical tests. Implications

to three-dimensional systems are identified.

Chapter 6 summarizes the major conclusions drawn from the current investigation and presents

recommendations for further research.




1.4 Terminology for the Description of Microstructure

Micromechanical studies of granular materials require introduction of some nnique physical con-
vepts and have necessarily evolved a terminology specific to the discipline. It 1s useful at this stage
to introduce basic concepts and terminoclogy related to the characterization of microstructure. In
#01] mechanics literature the term fabric has been used extensively as a generic term to describe the
grometry of particle packing {microstructure).

Granular materials are assemblies of discrete cohesionless particles having arbitrary shape and
{typically) a range of particle sizes. A reasonable assumption is that the particles are essentially rigid
but interact through compliant point contacts.

An individual particle at static equilibrium may be in contact with several neighbonrs as shown
on Figure 1.3. The number of contacts per particle is called the coordination number of the particle.
Clearly each physical contact contributes two contacts to the assembly. The average coordination
number, v of the assembly is:

My

- (1.1)

Here My represents the total number of contacts within the assembly volume and N, the tolal nnmber
of particles. For brevity in the following text, -y is often referred to as the amsembly ceordination
number.

Results of numerous investigations have shown that coordination number i# intimately related to
familiar descriptions of particle packing such as assembly density p, or void ratic ¢ {e.g. Smith, Foote
and Budang, 1929; Oda, 1977). In general, an assembly of particles with a high coordination nmmber
is more stable and less mobile than the same assembly with a lower coordination number.

Coordination number introduced above is an incomplete description of particle packing as it
carries no information on relative particle orientations. This aspect of microgbruciure is often described
by particle contact normals where a contact normal #° is the exterior directed normal to the tangent
plane at the point of contact between particles as shown on Figure 1.3,

Additional information on relative particle orientations can be obtained from the distribution of
lines joining the mass centres of contacting particles. These lines are often referred to as branch lengths
{e.g. Satake, 1978). An alternative description, which implicitly includes the influence of particle
shape, identifies a contact vector pair at each physical contact. A comtact vector [¢ is defined as a
vector directed from the mass centre of a particle to a point of contuct with a neighbour (Rothenburg,
1980). Both definitions are shown on Figure 1.4. The latter description is used in this work but

both give the same fundamental information on particle arrangement. For spherical particles, contact
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vectors and contact normals are coincident.

The study of discrete particulate systems with a very large number of particles requires the knowl-
aclye of the relative proportion of contacts falling within different orientation intervals. As illustrated
on Migures 1.1b and 1.1c, an assembly may have a greater number contacts in the vertical direction as
zompared to the horizontal direction. Complete description requires knowledge of the proportion of
contacts falling over the entire range of possible orientations. In addition, the statistical description of
granular systems comprising a very large number of particles is greatly facilitated if contact normals
and contact vectors (or chains of contact vectors) are distributed homogenecusly throngh the Joaded
assembly. Under these conditions contact orientations can be described by continuons distributions
which relate contact vectors and contact vector lengths to orientation. If these distrilsntions exhibit

preferred directions then, these directions are commonly referred to as directions of antaoirepy.

1.5 Notation

Indicial notation has been used throughout this study. In general, mathematical expressions are
referenced to a fixed Cartesian coordinate system having base unit vectors ¢;, 4 = 1,2,3 {or 1= 1,21n
two-dimensions). Terms are defined where they first appear and important quantilies are asummarized
in the list of nomenclature which appears as a preface to this study. As much as poziible, s0il mechanics
terminology has been adopted since it is the micromechanical behaviour of grannlar materials which

has inspired the current investigation.

1.6 Literature Review
1.6.1 General

Modern directions of research on micromechanics of grannlar materials date back to the mid-
fifties when Schneebeli (1956) introduced a model of granular malerials as an assembly of metal rods.
Two and three-dimensional physical models were subsequently improved by using optically sensitive
materials (Dantu, 1957). Visualization of load transmission in these systems intuitively identified the
important elements of microstructure which are responsible for macroscopie behaviour of granular
materials. These elements of microstructure have been identilied in the previons section (e.g. coor-
dination number, contact orientations). More recently, micromechanies research using assemblies of
photo-elastic discs as two-dimensional analogues to granular systemns has been directed at quantifying
observed patterns of load transmission and empirical introduction of plausible descriptors of fabric

(e.g. De Josselin De Jong and Verruijt 1969; Oda and Konishi, 1974a, 1974b). While this research has
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vuled important insight into microscopic processes in granular materials, only in the last few years

haa a proper physical framework emerged which provides a mathematically manageable link between
sacroscopic behaviour and microscopic observation (Rothenburg, 1980).

The subsequent review traces major steps in the evolution of micromechanical ideas and methods.

. ¥inally, developments that are the starting point of this investigation are presented.

. 1.6.2 Selected Previous Investigations

Dantu (1957)

Dantu (1957) investigated in a qualitative manner load transmission in two-dimensional assem-
‘blies of cohesionless photo-sensitive cylinders (discs) and three-dimensional assemblies consisting of
’ glass beads. These experiments were among the first to demonstrate that load Lransmisaion occnrred

through highly-oriented chains of particles. Dantu recognized that density was an in

amplete de-

omebrical

acription of fabric and that any statistical description of microstructure must include the g

arrangement of particles.

Biarez and Wiendieck (1963)
Biarez and Wiendieck (1963) examined the distribution of contacts for two-dimenaional assemblics
of irregular-shaped particles. The assemblies were compressed horizontally and then vertically and

photographed at intervals to extract contact distributions. The results al aeveral st

ges of loading are
shown on Figure 1.5a and have been replotted from the original data. The plota represent frequency
distributions for contact normals with orientations between 0 and 90 degrees Lo the vertical counted

over 10 degree intervals. The test data shows that the distribution of contact normals was symmetrical

about horizontal and vertical axes and that the direction of contact anisolropy was sensibly coincident
with the direction of applied loading. Biarez and Wiendieck noted that if the frequency distribution
data was plotted in the form of a rosette, the distribution of contact orientations formed an clliptical

shape. A coefficient of anisotropy A was defined based on this geomelry according to:

A=1"% (1.2)
a] + ap

where o) and o, are the scaled vertical and horizontal semi-axis lengths of the ellipse. The intensity
of contact anisotropy in the sample was seen to depend on the magnitude and history of loading as
shown on Figure 1.5b. In addition, Biarez and Wiendieck observed that initial contact anisotropy,

defined by coefficient 4, and initial void ratio e were both sensitive to details of sample preparation.
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~“Fsportantly, both parameters appeared interrelated since the value of A for initial samples was seen

‘rease 1n a linear fashion with increasing void ratio.

Hill (1963)
Hill {1963) examined the properties of homogeneous two-phase solid elastic mixtures. In this
;%Lndy he proposed that similar representative volumes of the assembly would exhibit fluctuations in
ilu second-order stress tensor o about some average stress tensor value 3. For large homogeneous
“f‘,ya'ulj)mssemblies these fluctuations could be considered insignificant and the average stress tensor @
s 'mken as an adequate description of the state of stress throughout the total volume. Further, the
”‘,average stress tensor could be related to boundary force components (tractions) according to:
_ 1 1 B BB .
U;J'—V/‘;U;J‘dv=§/—/;($;1} —f—:r,jT‘.)dS 1,7 =12,3 (1.3)
Here I}ﬂ represents boundary tractions acting at a point with coordinates :c? on the boundary surface
5.
The concept of an average stress tensor for homogeneous discrete granular systems has been

adopted by subsequent researchers including Drescher and De Josselin De Jong (1972), Strack and

Cundall (1978), Rothenburg (1980) and Mehrabadi et al. {1982) among others.

Horne (1965)

Horne (1965) proposed that anisotropy in the distribution of particle contacts for irregular as-
semblies of uniform spheres may be described by some distribution function E(9, §).

If a spherical coordinate system is adopted, such as that shown on Figure 1.2b, then, the fraction

of total contact normals falling within the solid angle f to §+ AS, 8 to § + A#f is:

M~ 6+00 ,B+AP ]
= /o /ﬂ E(0, B) sin B dB df (1.4)

Here M, (6, B) represents the number of contacts in the interval and My the total number of contacts

in the assembly. Integration of (1.4) over the complete solid angle 0 < § < 2w and 0 < f < 7 gives:

2 ™
/ / E,B)sinfdpdf =1 {1.5)
o Jo

For an isotropic assembly (i.e. an assembly with no preferred contact orientation) E(8, f) = 1/4x.

Implicit within the above formulations is the assumption that the number of particles is large enough
that the arrangement of contact normals is approximated by a continuous distribution function. Func-
tions similar to (1.4) have been used by subsequent researchers to describe aspects of microstructure
for assemblies comprising non-spherical particles and a range of particle sizes (e.g. Oda 1972a,b,c,

1977, Oda and Konishi, 1978, and Rothenburg, 1980, among others).
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Weber (1966)
Weber (1966) proposed that a macroscopic stress tensor o could be equated to assembly contact
~ansd the geometrical arrangement of contacting particles. The eguivalent expression rewritten
indicial notation adopted in the current study is as follows:
of = %Z fre =123 (1.6)
ceV
’ sV denotes all contacts in the assembly volume. Terms ff and I£ refer to scalar components of

act forces and the contact vector associated with each assembly contact.

De Josselin De Jong and Verruijt (1969), Drescher and De Josselin De Jong (1972)
Inspired by earlier research reported by Dantu (1957}, De Josselin De Jong and Verruijt {1969)
‘ ‘i}wcst,igated assemblies of photo-elastic discs as two-dimensional models of idealized granular media.
Important aspects of these tests have been described in the introduction to the current work.
Drescher and De Jong (1972) used a similar technique to examine the behaviour of two-
dimensional assemblies under conditions of flow {i.e. large assembly deformations under conditions
of constant volume and stress). These researchers calculated the second-order average stress tensor
& for circular sub-assemblies located in regions sufficiently removed from the rigid sample boundaries

that the distribution of contact forces was essentially homogeneous. The average stress tensor was

calculated using the following approximation:

— 1 ﬁ ﬂ . .
T = Zﬁ z; f; 1,7=1,2 (1.7)
CE

B : B .
where f; represents equivalent sub-assembly boundary force components and z; the coordinates of
the intersection points of these forces on the boundary. Calculations showed that moment equilibrium

A

was satisfied in these tests according to ) z; ff =53 :z:fff for 7 # 7. Consequently, the average stress

tensor description {1.7) satisfied the condition of symmetry (i.e. 7 =5, 1 # 7 )-

Skinner (1969)

Skinner (1969) reported the results of a series of physical tests designed to examine the influence
of interparticle friction angle on the macroscopically observed shearing resistance of assemblies of
spherical particles during simple shear. Skinner noted that the directly micasured maximum value
of interparticle friction angle ¢, for dry assemblies could be increased dramatically by flooding the
samples with water. Figures 1.6a and 1.6b show the results of shear tests comprising 1mm diameter

glass ballotini with high and low interparticle friction angles. The ratio of friction angles was at least
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- in these tests yet no significant difference in measured peak macroscopic shearing angle ¢pqr or

al the ultimate condition was observed between samples. The results of several tests are given

i Figure 1.6c which shows that the value of ¢., is relatively insensitive to the magnitude of ¢,.

uner suggested that interparticle rolling mechanisms may predominate for high friction materials
ihareby reducing the direct contribution of interparticle friction angle Lo Lhe shearing resistance of

¢3¢ materials.

Oda (1972a,1972b,1972c)

Oda (1972a,b,c) used the concept of a probability density distribution function E(8,f), similar
to Horne (1965), to describe the distribution of contact normals extracted from cylindrical samples
sf compacted sand. The same references report the results of drained triaxial compression tests
performed on’samples of sand comprising rounded to subrounded particles. The samples were hnpreg-
nated with a water-resin mixture at stages in the tests and orientation data interpreted from vertically
and horizontally cut thin-sections. Examples of his contact orientation analyses have been presented
in the form of contact density plots projected on equal area stereonets (Figure 1.2c).

From measured contact orientation data, Oda extracted the value of the axially-symmetric dis-
tribution function £(f} at stages during triaxial testing. The change in E(f) provided a quantitative
measure of the evolution of contact anisotropy during triaxial loading. For example, Figure 1.7 shows
that the distribution of contact normals became progressively anisotropic with increasing vertical prin-
cipal stress. Furthermore, principal directions of contact anisotropy and stress appeared coincident.
In addition, Oda noted that the change in E(f) was most dramatic prior to the peak principal stress

ratio, after which, E(f) did not change markedly.

Smith et al. {1929), Oda (1977), Field (1963), Athanasiou-Grivas and Harr (1980)

Smith et al. (1929) proposed that the average coordination number for assemblics of mono-sized
spheres was strongly correlated to the assembly void ratio e (or density p). More recently, Field
(1963}, Oda (1977) and others have shown that for assemblies comprising a limited range of particle
sizes a similar strong correlation exists. For example, data presented on Figure 1.8 from Oda shows
that the relationship between void ratio and average coordination number is essentially independent
of size distribution. On this figure, the two-mixed assembly comprised spheres of two different radii
and the multi-mixed assembly comprised spheres with four different radii.

Field (1963), Athanasiou-Grivas and Harr (1980} and others have proposed simple mathematical

relationships between average coordination number and assemble void ratio (or porosity n) for a
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1y of granular media covering a range of grain-size distributions. The experimental work by these
wehers is important because it shows that state parameters such as void ratio (which is a relatively

parameter to determine in the laboratory) may be related to the average coordination number

1, in turn, is considered to be a fundamental characterization of the microstructure of granular

#mblies.

Satake (1978)
Satake (1978) pointed out that for plane systems of particles, the distribution of contact normals

#ould be described by a second-order anisotropy tensor C which is defined by the following relationship:

2m
Ci;=2 E(0)nins do 3,7=1,2 (1.8)
0

The tensorial description is independent of the form of E(f) and reduces to the unit tensor for
’isotropic assemblies (i.e. for E(f) = 1/2x). Satake recognized that the tensorial description of fabric
given by (1.8) is fundamental to the mechanics of granular media. Oda et al. (1982} and Mehrabadi
et al. (1982) have proposed a three-dimensional tensorial quantity similar to (1.8) which they have

called a fabric tensor.

1.6.3 Two-Dimensional Model Tests by Oda and Konishi

Oda and Konishi (1974a, 1974b) and Konishi {1978) report the results of laboratory simple shear
and biaxial compression tests on two-dimensional assemblies of discs. The general test arrangement
for the simple shear tests is shown on Figure 1.9.

The assemblies consisted of about 400 photo-elastic cylinders with diameters of 0.3,0.4 or 0.5 cm.
The discs were placed in a random manner between two glass plates in the ratio 25 : 15 : 8. Boundary
loads and displacements were applied to the assembly through rigid platens. At the start of each
test the assemblies were uniaxially loaded with no lateral expansion allowed followed by a shearing
force applied through the lower platen. At intervals during shearing, photographs of the assembly
were taken and the geometry of contacts and contact force intensity and orientation extracted from
photo-elastic isochromatics in the vicinity of contacts.

Using the results of simple shear and biaxial compression tests, Konishi (1978) examined con-
tact orientation anisotropy, contact force anisotropy and average stress in these assemblies. Con-
tact anisotropy was quantified using a method first reported by Curray (1956) for analysis of two-

dimensional orientation data. In this procedure an invariant measure of the intensity of preferred
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n M and the preferred direction 1 are calculated from:

P 2
e 1 .
3= e | [ Ma0)sin2(6) |+ | 32 M,(0,) cos2(0,)
o 9{0g 7, 0y
(1.9)
3 My (6g) sin 2(0,)
tan2y = 1

DE My (04) cos2(0,)

9

sve M, (6,) represents the number of contacts with the approximate orientation §,. Konishi (1978)

1 as an assembly

hibiting maximum contact anisotropy.

The invariant stress ratio oy /o,, was calculated from analysis of sub-assemblies of discs occupying
A;;pmximately the middle two-thirds of the sample. Terms o; and o, are deviatoric and normal
" invariants of stress associated with the Mohr circle of stress.

The results of two simple shear tests using an initially loose assembly (e, = 0.26) and an initially
dense assembly of the same discs (e, = 0.22} are given on Figure 1.10. The term shear distortion on
[igure 1.10 is equal to the tangent angle formed by the upright platens with the vertical. Figure 1.11
shows polar histograms for contact normals at selected intervals during these tests. In a similar manner
to the cylindrical samples of sand investigated by Oda (1972a,b,c), the two-dimensional assemblies of
discs showed contact generation and loss in preferred directions under load.

Several important observations have been made by Oda and Konishi with respect to the results

of their two-dimensional tests:

1} The quantity M describing contact normal anisotropy was strongly correlated to the invariant
stress ratio 0y/0,. In general, as the shear capacity of the system increased, the anisotropy of

contact normals increased.

2} During principal stress rotation the major principal stress direction and the preferred direction

of contact normals, ¢, appeared coincident.

3} Frequency distributions of mobilized interparticle friction angle ¢,,.5 = tan™*(f¢/fS) measured
at stages in the two-dimensional tests were unimodal about ¢,,,., = 0 (here f; and f;; are tangen-
tial and normal contact forces respectively}. As shown on Figure 1..12, the limiting interparticle
friction angle ¢mop = @, seldom occurred. The same phenomena have been reported in similar

physical experiments employing oval-shaped photo-elastic particles (Oda, et al., 1983). These
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observations together with frequency distributions of average (total) interparticle forces led Kon-
ihi (1978) to the conclusion that the primary mode of interparticle force transmission is through
¢hains of contact forces which act normal to contact planes and in a direction which is essentially

coincident with the maximum principal stress direction.

4} Oda and Konishi (1974b) and Konishi (1978) extracted average (total) contact force distributions
with respect to orientation and showed that these distributions counld be approximated by smooth

trigonometric functions.

1.6.4 Rothenburg (1980), Rothenburg and Selvadurai (1981a,b,c)

Rothenburg (1980} reported the results of theoretical investigations into the micromechauical

- behaviour of idealized granular assemblies comprising discs or spheres.
In this study he showed that the average stress tensor @ for these systems has the properties of
. the stress tensor of continuum mechanics but is derived from consideration of discrets contact forces,
contact geometry and principles of static equilibrium which together represent an approach foreign to
classical continuum mechanics concepts. 4

A fundamental assumption in this study is that contact forces and contact vectors ars homoge-
neously distributed through the granular assembly which contains a very large number of particles.
The position independent nature of these parameters allows them to be approximated by continu-
ous distributions representing averages of contact forces and contact vector lengihs with respect to
orientation. These distributions, which are a statistical description of internal load transmission and

fabric, are related to the average stress tensor according to:

i 7

E,-J-=m,,/ LOLQEQ) I 4,5=1,2,3 (1.10)
Q

where E () represents the distribution of contact normals and d{l = sin #df df. The constant, term in
front of the integral expression is the assembly contact density m, = My /V. A similar relationship to
(1.10) has been reported by Mehrabadi et al. (1982). To further examine refation (1.10), Rothenburg

has considered the two-dimensional analogue to this expression which is:
27 — .
T =ma [ TOGOEO) D =12 (L.11)
0

Assuming assemblies of equal-sized discs with diameter d,,, expression (1.11) can be decomposed

to:
My

do [*7 (4 e e -
E‘J':T/O (Frloynins + Fi(6)ens) E@)do i3 =1,2 (1.12)

. 19




Narmo! Force
P =40 kg

Applied
Shear ——e—
Farce Q

Figure 1.9 Two-Dimensional Simple Shear Test Apparatus
(after Oda and Konishi, 1974a)

30 T — 1.5
NORMAL FORCE P=40kg
& Densey Physical Experiments
O Loose (Oda and Kanishl, 1374 a}
(O Numericol Experiment {Strock ond Cundall,i978
/- 10

Yous

[um

0 5 10 [

Sheor Distortion (%)

Figure 1.10  Comparison of Physical and Numerical Simple Shear Tests

20




7/0

X
| .
k 6
Figure 1.11  Fabric Changes during Simple Shear of Initially Dense and Loose Assemblies
of Discs (after Konishi, 1978)

X
z %
z

A :Preferred
Orientation

c 150 W 150 150

1o H 0

n
©
—
L
>

50

FREQUENCY
5

2010 0 10 20 20 0 O 10 20~ 2010 0 10 20
¢mob (IN DEGREES)

Figure 1.12  Frequency Distributions for Mobilized Interparticle Friction Angle
{after Oda and Konishi, 1974a)

21




A" = (cosf,sinf) and ¢ = (—sind,cos 6) are normal and tangential components of contact
' respectively. Rothenburg (1980) has proposed that the distribulion [unctions E(6), 7,:(9) and

can be described by truncated Fourier series expressions such as:

E(6) = %{1 + acos2(8 — 6,) +bcos 4(6 — 0,)} (1.13)
Fol6) = £2{1+ ancos2(6 — 65)} (1.14)
Fi(6) = —f2{aysin2(0 — 6,)} (1.15)

12 non-dimensional parameters a, b, a, and a; are coefficients of anisotropy which are 4 measure of
lie intensity of these distributions in the directions of anisotropy denoted by 8., #; aund #; respectively.
rm f2 is the average normal contact force from all assembly contacts. Rothenburg has developed
owerful relationships which equate the micromechanical parameters identified above 1o the macroscale

shear capacity of the system. For example, if distributions for average contact force components and

contact normals are assumed to have coaxial directions of anisotropy then:

1
ot §(a+an+at) {1.16)

On

Relationship (1.16) shows that the shear capacity of the assembly is due directly Lo contributions
of anisotropy from contact normals a, average normal contact force a,,, and avernge tangential conbact
force ag.

Developments leading to the relationships described above have been summarized by Rothen-
burg and Selvadurai (1981a,b,c). Verification of relationship (1.16) developed Ly Rothenburg and

Selvadurai for assemblies of equi-diameter discs is a major part of this inveatigation, It i3 ghown that

these relationships retain their form for assemblies comprising a range of ize diameters. Simplifying
assumptions leading to this conclusion are carefully examined and their validity i assessed based on
the results of numerical simulation.

In Chapter 5 of the current study, a similar relationship for three-dimensional assemblies of
spheres or near-spherical particles is proposed. In a recent study by Rothenburg (1985), an equivalent
expression has formed the basis of a continuum model for sands. Verification of two-dimensional

analogues carried out in this study has proved to be an important step towards verifying the validity

of the constitutive model.
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vinerical Simulation of Idealized Granular Systems

wetical simnlation of media modelled as a collection of discrete particles is not restricted to
- assemblies. For example, fluids have been modelled as assemblages of hard discs or hard
in two and three dimensions (Bernal, 1964). Hard sphere models have also been used in
ey simulation of crystal structure and in molecular dynamics (Ziman, 1979). Regardless of the
ition, these numerical techniques involve the solution of equations of motion for all particles
yizing the system under study.

" An explicit finite-difference numerical scheme called the Distinct Block Method (DBM) was first
q‘?,ud by Cundall {1971) as a numerical technique to solve equations of motion for granular as-
blies. Specifically, the DBM was used to carry out numerical experiments on planar assemblies of
ﬁrte polygon-shaped blocks as an analogue to broken rock masses. The technique was subsequently
Qfﬂf’:u:]iﬁed by Strack and Cundall (1978) to simmlate the behaviour of two-dimensional assemblies of

. discs representing idealized granular systems under conditions of loading and unloading. These re-

+ ~agarchers have developed a FORTRAN-code computer program called BALL which implements the

* Distinct Element Method (DEM) for assemblies of discs. Principal features of the program BALL
snd the results of numerical experiments have been reported by Cundall and Strack (1979a,b,c) and
Cundall et al. (1982).

The major advantage of numerical simulation of granular media using techniques such as the
DEM is that complete information on the system is available at any stage In a test. In addition, the
influence of micromechanical properties such as interparticle friction angle and contact stiffness can be
assessed more readily from these experiments than from comparable physical (photo-elastic) models.

The above researchers have attempted to validate the prototype program BALL as a useful tool
for the investigation of the mechanical behaviour of idealized granular systems. The first validation
exercise is reported by Strack and Cundall (1978) and was an attempt to reproduce the macroscale
force-displacement response of the dense two-dimensional simple shear test reported by Oda and
Konishi (1974a). The physical test has been described in the previous section. In the numerical
simulation, the size distribution of discs was identical to the physical test but they were placed in an
alternative random manner. With the exception of interparticle friction, disc properties were assumed
by Strack and Cundall based on experience with the program BALL.

The results of the numerical simulation have been presented together with the physical test data
on Figure 1.10. The numerical test, at least qualitatively, appears to behave in a similar manner to

the dense assembly. The fact that the numerical test is more dilatant than the dense physical test
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% be due in part to the greater initial density achieved by Strack and Cundall. Iy repeating the
' ment with a less dense sample and different values of selected parameters, snch as disc density
contact stiffness, Cundall and Strack believe that the laboratory results could be duplicated more
ly.

The second validation attempt was to numerically duplicate a test on pholo-cla

1w dises reported
¥ D¢ Josselin De Jong and Verruijt (1969). The results of this computer simulation can e found
{undall and Strack (197%9a). Some major differences exist between the laboralory invesiigation
d the numerical simulation. For example, initial laboratory loading conditions arée not reported
by De Josselin De Jong and Verruijt and contact friction angles and contact stiffne had

gsumed in the computer simulation. In addition, the physical test was curied out under foree-

Ler e

controlled boundary conditions while the numerical simulation employed strain-conieolled bising

~ Nevertheless, the distribution and relative magnitude of contact forces from the numerizal

2 owel's
gualitatively similar to those shown on Figure 1.1a.

The current investigation uses a heavily-modified version of the original program BALL called
DISC but preserves the fundamental aspects of the DEM. Details of the DEM and its implimentation

using program DISC are given in Chapter 4.
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CHAPTER 2
THEORETICAL DEVELOPMENTS

Introduction

{2hapter 2 outlines the development of the fundamental relationship (1.6) proposed by Weber
} for discrete particulate systems in static equilibrinm. This relationship equates a macroscopic
s tensor acting at the boundary of an infinitely large system to volume-additive quantities de-
tbing all assembly contact force and contact vector length components. The approach adopted

‘the current development follows very closely that used by Rothenburg and Selvadurai (1981b) for

ynamic assemblies.
It is shown that the macroscopic stress tensor proposed by Weber (1966) is identical to the average
#revs tensor proposed by Hill (1963) and both quantities are considered to have the properties of the

:ir198 tensor used in continuum mechanics.

Next, theoretical developments are simplified by considering assemblies of spheres. A statistical
mechanics approach is adopted which considers only certain averages of statically admissible contact
force components together with average contact density and the distribution of contact normals. These
average expressions are related in an integral form to the average stress tensor of the assembly in a
iJevelopment which is similar to Rothenburg (1980).

Finally, it is shown that assembly microstructure can be described by a fabric tensor of the same
rank as the second-order stress tensor. The distribution of contact normals can be visualized as a

three-dimensional surface described by a second-order equation.
2.2 Macroscopic Stress Tensor from External Applied Forces

Consider a three-dimensional assembly of rigid particles of arbitrary shape contained within a
continuous smooth boundary. A two-dimensional analogue to such an assembly is shown in the
Cartesian coordinate space on Figure 2.1. Tractions acting on the boundary S at R may be specified

in terms of a stress tensor af’j such that:

Txﬁ(R) = Ug'nf(R) i) .7. = 1) 2: 3 (2‘1)
where 7i denotes the exterior unit normal acting at R. Equation (2.1) corresponds to Cauchy’s
fundamental theorem for continuum. However, it should be noted that the tractions acting at the

boundary of the discontinuum idealized on Figure 2.1 correspond to tractions which would act on the

25




N

a

32

Figure 2.1 External Tractions Applied to a Smooth Boundary
2
>B
f
s B
=B
<R
Figure 2.2 Equivalent Forces Applied to Partitioned Boundary



iary of a similar uniformly stressed continuum. The tensor quantity U‘lpj is introduced at this
suly to describe boundary tractions and cannot be identified as the stress tensor of continuum
Hanics.

ff the boundary surface § is partitioned into segment areas S? as shown on Figure 2.2 then, the

alent boundary force 8 at the segment may be expressed in component form as:
pe [ mas 2
S

Now let 2% represent the location of the equivalent boundary force on $# and # the intersection

int of the boundary particle with the boundary segment. For assembly volumes where 77 and 7

_#re large with respect to segment boundary areas and particle dimensions then, :z:? e r?
If a judicious choice of boundary partitioning is allowed then, the above approximation could

be made exact and equivalent boundary forces could be applied directly to boundary contact points.
. Aylternatively, a non-rigorous argument to justify an exact expression is that on average the expression
- holds and the global response of the assembly is insensitive to the approximation for Jarge volumes

and a great number of particles.

Using :r._? = rf, expression (2.2) can now be rewritten as:

e = /Sﬁ T (R)s” ds (2.3)

Substituting (2.1) into {2.3) leads to:

fBe8 = / ol i (R)? ds (2.4)
sP

Addition of all contributing boundary contacts and integration of the right-hand side over the entire

boundary surface, 9, using the Gauss-Green theorem gives:

S =val (2.5)
BeS
Relationship (1.3) proposed by Hill (1963) can be recovered from expressions (2.3} and (2.5)
assuming compensated boundary moments (i.e. T‘B(é)zf = Tfi(fn‘.)x?, 1% 7 ). Dxpression (2.5)
has also been reported by Drescher and De Josselin De Jong (1972), Strack and Cundall (1978) and
Mehrabadi et al. (1982) among others.
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nvroscopic Stress Tensor Description from Internal Distribution of Contact Forces
and Microstructure

niitions of static equilibrium for a single particle & requires that:

Nk
SoF=0 45=1,23 (2.6)
n=1

. . . ks .
44 niy, represents the number of contacts associated with particle k. Terms f° in expression (2.6)
to contact force components acting on particle k from particle n. In this development, contact

e4 ave assumed to act at a point and, consequently, transfer of momeuts across physical contacts

fint considered.

No loss in generality occurs if each force component in (2.6) is multiplied in turn by the 7;‘ position

zzanponent of the particle centroid. This operation leads to nine equations of the form:

Nk
Sk =0 (2.7)
n=1

The geometrical arrangement between contacting particles located at the interior of the azgembly
iz shown on Figure 2.3. The geometrical arrangement of a boundary particle is given on Figure 2.4.

If the summation (2.7) is considered for all N particles in the assembly (interior and boundary

particles) then:

As shown on Figure 2.3, each interior physical contact contributes contact forces such thut:
fn,k + fk,n. =0 (-)A(‘))
In addition, interior contact geometry gives:

"3 k,n .
=107 -0 (2.10)

where I™* represents the contact vector directed from the centroid of particle n to the contact with
particle k.

Terms contained within (2.8} representing non-boundary contacts can be collecied together in

pairs such as:
(F5m e+ ) ‘ (2.11)

From (2.9) and (2.10) the above expression is equivalent to:

—(f‘-k’nl?’k + f:l,kl-’;,") (2.12)
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Or, in general, contacts in the above summation (2.8) appear as:
e (2.13)

Now consider the contribution of boundary contacts to the general expression (2.8), From Figure

2.4 thess contributions will appear such as:

it (2.14)

Components of the contact vestor [ for a boundary contact and the position vector #* for the

boundary particle centroid are related by:

N a "
Pf +¢ =1y fﬁ.'.l.:}l
Terms (2.14) can now be expanded to:
NN k,
o M il (2.14)

Hence, each boundary contact contributes an internal contact term of the form [2.13) and a boundary
contact term of the form given by expression (2.5). Summation of all terms in {2.14) and expression
(2.5) gives:
1
apy = = b i (2.17)
o'V
where c£V denoctes summation with respect to contacts within and on the boundary of the asssmbly.

It can be noted that certain subsets of (2.8) must satisfy the condition of moment equilibrinm

for each particle. Specifically:
g
Pl sl S LT (2.18)
n=]

The development leading to cquation (2,17} shows that the macroscopic stress tensor for an
idealized granular system can be developed from consideration of statically admissible contact forces
and microstructure deseribed by contact vectors, This equation iz a direct consequence of cquations
of static equilibrium in a system in which boundary tractions are specified in terms of .:r:. Although
the system is indeterminant, the sum of the combinations FI is constrained by conditions of static
equilibrinm,

Expression (2,17) has also been reported by Weber (1966), Dantu (1968), Rothenburg [1980) and
Christoffersen et al. (1081).
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i Average Stress Tensor for Discrete Particulate Systems

Tensor afj was introduced here as a quantity specifying boundary loads on a statistically homoge-
f%iw discrete particulate system. If sums of force-contact vector components in (2.17) are evaluated
# any subregion of the assembly then, it would fluctuate from volume to volume. However, as the
ﬂ()ma.ins increase in volume and number of particles, these fluctuations can be expected to become
aller and smaller. This tendency to a single representative average siress tensor is assured by the
mposition of the function where each term makes a small contribution to %,— ;4. Ounly in the limit
[ an infinite assembly does crg. become volume independent and possess properties of the stress tensor
5f continuum mechanics. It should be noted that a continuum is an abstract entity that physically
eorresponds to a system comprising an infinite number of particles per unit volume. In any practical
“situation, physical volumes of interest indeed contain a large number of particles. Expression crg. as
/ a stress tensor applied to finite but large volumes is an accurate analogue of the stress tensor used in
“¢ontinuum mechanics. Rothenburg and Selvadurai (1981b) have shown that for particulate systems,
' ‘z!,t.ress tensor (2.17) gives a gross traction T acting on a plane with normal fi according to the Cauchy
relationship (2.1). As a result of the arguments presented above, the average stress tensor & and the
boundary stress tensor of are assumed equivalent in further discussions and oy; = 7i; = af;..
Like the stress tensor of classical continuum mechanics, the quantity oi; is a second-order sym-
metric tensor. Symmetry is due to the condition of moment equilibrium for each particle (2.18) which,

when considered over the entire assembly leads to:
Oi; — 04 = %‘Z(fflf - ff)=0 i#j] (2.19)

ceV

Unfortunately, calculation of the average stress tensor using relation (2.17) requires exact knowl-
edge of contact forces and contact vector terms for all particles. However, as the next section shows,
equivalent more manageable expressions for the average stress tensor can be developed by considering
certain averages of contact forces and microstructural properties over assembly volumes approaching

the infinite.

2.5 Average Stress Tensor from Averages of Contact Forces and Microstructure

Consider the unit spherical coordinate system shown on Figure 2.5 where 0 < g < 7 and
0 < § < 2. Imagine that average values of the product terms f{I are calculated from all con-
tacts whose contact vectors fall within the elemental solid angle AQ = sin § Af Af. Product terms in

the summation (2.17) corresponding to the same interval A{l can be approximated by group averages
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eased as f'?—l;(ﬂg) where (2, denotes the group orientation. Such a rearrangement is permissible
13 terms are position independent. However, if group averages are used, a quantity repre-
ing the number of contacts in each group must be included to preserve relation (2.17). In similar
’ix}pments by Rothenburg (1980) and Mehrabadi et al. (1982), a normalized discontinuous function
) has been used to describe the distribution of contacts with respect to contact vector orientation.

# fraction of total assembly contacts (or contact vectors) associated with the group {3, is related

M,(Q,) = My E(Q)sin 8 AB AS (2.20)

#re My denotes the total number of assembly contacts. Summation over all assembly contacts

ST E@An=1 (2.21)
ng

It is now convenient to introduce a contact density term m,, which is a measure of the average

intensity of particle packing (Rothenburg, 1980), and is defined as:

my = (2.22)

The average stress tensor expression (2.17) can now be approximated by:
giy=my Y FEOQEQ)AQ  4,5=1,2,3 (2.23)
ng

Clearly, as the averaging interval approaches zero the exact relationship (2.17) is recovered.

The step from (2.17) to (2.23) presupposes that contacts or chains of contacts are distributed
homogeneously over the considered volume. This spatially random distribution is then consistent with
the concept that oy represents an average stress condition for large systems.

Further study of the relationship between the average stress tensor, contact forces and microstruc-
ture is greatly facilitated if (2.23) can be rewritten as:

oij =my y_ Fi((Q)E(Q) AQ (2.24)
ng
For this step to be valid however, distributions of ff and l;’ must be uncorrelated.

Now consider an assembly with a large volume and a great number of particle contacts. The
discontinuous function E((2) can be considered to approach a continuous distribution function similar
to that proposed by Horne (1965). Expression (2.20) becomes:

M,(Q,) = My o E{()d0Q (2.25)
g
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#fies the constraint:
/ E(Q)d2=1 (2.26)
a

tropic assemblies (i.e. assemblies with no preferred contact vector orientation) E(Ql) = 1/4x.
Jaing a similar argument, distributions f;({1) and Zj(ﬂ) can be expected to loose their discon-
iis appearance and approach smooth distributions for assemblies comprising a great number of

les. Assuming an assembly with Vlif‘oo, M‘l,ifl o and Agio, relation (2.24) can be expressed in

gral form as:
iy = my [ T E@) 0 (2.27)
9]

The limiting operations used above are required at this stage in order to approximate a large
'iéc,,rete mechanical system which is mathematically intractable, by an infinite continuous mechanical
'ﬁﬂ%ﬂl which is mathematically manageable.
’ Relationship (2.27) is similar to expressions proposed by Rothenburg (1980), Rothenburg and
Helvadurai (1981a,b) and Mehrabadi et al. (1982). At this point in the development, the form of
the functions describing the distributions in (2.27) is unknown and their mutual independence is only
assumed. It is likely, for example, that T;(ﬂ) is a complex expression since it must include the influence
of particle shape and particle size-distribution.

Expression (2.27) can be simplified if an idealized granular assembly of equi-diameter spheres is

considered. For spheres of constant diameter d,, the distribution of contact vectors becomes:
L(Q) = —nJ-(Q) (2.28)

where 7i° denotes the exterior unit normal to the (tangent) contact plane. In fact, for any size
distribution of spheres, the contact geometry for these assemblies will be greatly simplified since
contact normals will be coincident with contact vectors. For an assembly of equi-diameter spheres,

equations {2.27) and (2.28) lead to:

d
oy = ol / Fo(@)ns(@)E(Q) a0 (2.29)
0
Expression (2.29) has been proposed in the same form by Rothenburg (1980) and can be recovered
from general expressions reported by Mehrabadi et al. (1982).
While some mathematical simplicity is introduced by considering equi-diameter spheres, an as-
sembly comprising equi-dimensional particles {of any shape) is a unique condition not found in natural

granular systems.

34




For an idealized granular assembly comprising a range of particle diameters, equation (2.29) can
be modified to:

oij = mal, / Fo()ns(Q)E(Q) () (2.30)
0

where [, represents the average contact length for the assembly. Implicit in (2.30) is the assumption
that average contact length is independent of contact vector orientation over the range of particle
. diameters present in the system (i.e. I'(Q) =1, ).

An additional simplification results from consideration of spherical particles, The contuct distri-
bution function is symmetrical with E(§1) = E(—Q). This symmetry is a consequence of each physical
contact contributing two contacts with opposite directions. It may be convenient to nue 2E{2) where
integration is carried out over the half-unit sphere €2,/ corresponding to the limits 0 £ # < »/2 and

0< 6 < 2n. Hence (2.30) can be rewritten as:

o3y = 2], / T2 (@)nS(Q)E(Q) d0 ey
a1/2 ’ ‘ ’

2.6 Fabric Tensor

Satake {1978) and Rothenburg (1980) have pointed out that the distribution of contact normals in
granular systems can be described by a certain second-order tensor. Oda et al. {1980) and Mehrabadi
et al. (1982) have proposed a similar quantity which they have identified as a fabric tensor,

Consider expression (2.20) in the form:

M—g‘(/n—g] = my E(Q) AQ (2.32)

No loss in generality occurs if left and right-hand sides are multiplied by the scalar products
n{(Qg)nt(Qy) where 7°(Q,) represents the contact group orientation. The result of these operations

is nine equations of the form:

M, (9 ,
gl(/ g)nf(ﬂg)ni'(ﬂg) = muE(ﬂ)nf(ﬂg)n?(ﬂg) AQ t,7=1,2,3 (2.33)
Taking all contacts over 2 and M“ff‘,w, Aglio for an infinite assembly gives:
1 c,..C c,..C
Ry = &3 nins = m, /; E(Q)ngns d0 (2.34)
ceV

where #i° is the contact normal orientation.
The quantity R;; represents a three-dimensional second-order fabric tensor. Tensor R. carries
all essential information on the geometrical arrangement of assemblies comprising spheres or near-

spherical particles. Examination of (2.34) shows that the fabric tensor is symmetrical with R:; = Ry
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for 7 # 7 and can be expressed either in terms of discrete information or, in terms of a suitably selected
distribution function E(Q). For an assembly with isotropic microstructure, the fabric tensor reduces
to R;; = m,&;; where §;; is the Kronecker delta (i.e. §; = 1 for 7 = j and, §;; = 0 for 2 # j).

A fabric tensor F proposed by Oda et al. (1980) and Mehrabadi et al. (1982) for assemblies of

spheres is related to the fabric tensor R by:
Fiy = LRy (2.35)

In this study the fabric tensor R is preferred since use of this descriptor implies (correctly) that the
micromechanical behaviour of systems differing only by a scaling term I, , is identical.

In an analogous manner to the stress tensor in continuum mechanics, principal fabric values can
be associated with the fabric tensor. In the same way that the state of stress at a point can be
described in principal stress space, the distribution of contacts can be described in a principal fabric
space. Principal fabric tensor values Rj, Rz and Rj can be found from the characteristic equation of

R. This equation is cubic and in determinant form can be written as:
|R;; — Ré;| = 0 (2.36)

Invariant scalar quantities similar to the octahedral normal stress and octahedral shear stress of
principal stress space can be defined for the contact density distribution. In this study these parameters
are denoted as the normal R,, and deviatoric R, invariant quantities of R. The normal invariant is

proportional to the first invariant of R and has constant value. Specifically:
(2.37)

The deviatoric invariant is proportional to the square root of the second invariant of the deviator

fabric tensor R/ and can be calculated from:

R::J. R',:J- 1

3 3

\/(R]_ — R2)2 + (R2 - R3)2 + (R]_ — R3)2

The deviator fabric tensor R’ is related to the fabric tensor R in the following manner:

Rix
Ri; =Ry - —3 O

(2.39)
By virtue of the fabric tensor definition adopted in this development, the deviatoric invariant

quantity R, is considered to be a fundamental characterization of anisotropic microstructure in ide-

alized granular systems.




,

2.7 Fabric Tensor and Contact Distribution Function from Laboratory Data

It is useful to consider expressions for E({2) which can be visualized as three-dimensional surfaces

with certain axes of symmetry. The general form of equations describing these surfaces is:

1 ..
B(Q) = —{1+amind}  i7=123
Gy=a;  i#] (2.40)
agr =0
Contact normal components nf are related to the unit spherical coordinate system on Figure 2.5

according to:

n] =sin Fsind
ng =cosf (2.41)
5 =sin fcosd

Coeflicient terms in (2.40) can be equated to tensorial quantities associated with the symmetrical

fabric tensor R. Equation (2.40) is simplified if we assume that principal directions of the fabric
tensor are coincident with the (orthogonal) axes on Figure 2.5. In this case, the normalized contact

distribution function E({l) can be expressed as:

B(®) = o {1+ a1(n)® + a2(n5)” + as(n)?} (2.42)

Parameters a,, a; and a3 are called coeffictents of principal contact normal anisotropy or coefficients
of contact anisotropy for brevity. These coefficients are related to the intensity of contact normals
in principal contact directions coincident with the base unit vectors e;, ez and es. For an isotropic
distribution of contacts, coefficients of contact anisotropy are zero. A positive coefficient terin implies
a contact density in the corresponding principal direction which is greater than that expected for
an isotropic assembly. Conversely, a; < 0 implies that contact density is reduced below the density

associated with an isotropic sample. Figure 2.6 shows isotropic and anisotropic contact normal dis-

tributions generated using relationship (2.42). Among a small number of researchers in the field of
micromechanics, the distinctive shape corresponding to an anisotropic distribution of contact normals

has been affectionately identified as a peanut.

A contact distribution function of the form (2.42) and expressions (2.34) lead to the following

relationships between principal values of the second-order fabric tensor R and coefficients of contact
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anisotropy:
R, ; ’
— =1 3 5
Ren/3 + (3ay + az + ag)/

R,
—— =1+ (a1 + 3az + a3)/5 2.43
Rye/3 (a1 + 3az + a3)/ (2.43)
R,
2 1
Rkk/3 + (al + asg + 3(13)/5

Similarly, the deviatoric invariant fabric quantity R; can be equated to coefficient terms from:

R, 2
Rkk/3 15

V(a1 — a2)? + (a1 — a3)? + (az — a3)? (2.44)

Oda {1972b) reports the results of a study directed at measuring fabric evolution in sand samples

during drained triaxial compression testing. A reasonable assumption for these tests is that the

distribution of contact normals is symmetrical about the vertical axis. Referring to Figure 2.5, this

condition implies E(f, f) = E(f) where axis 2 represents the vertical direction. For this axi-symmetric

condition the contact distribution function reduces to:

E(f) = & {1+ az(2 + 3 cos §)/4} (2.45)

Principal fabric tensor terms R; and the deviatoric invariant R; are now uniquely related to a single

coefficient of anisotropy a; by:

R,
R—kk'/’§ =1+ 2(12/5
R, Ra
=T =1 - 5 2.46
Rix/3 Ryx/3 az/ (2.46)
R,
T = 4
T3 V2az/5 (2.47)

Fabric tensor terms can be extracted from axi-symmetric contact normal data using expressions
(2.34) and a; calculated using relationships (2.46). This procedure has been applied to the test data
shown on Figure 1.5 which has been reported by Oda (1972b).

Figures 2.7a and 2.7b show the macroscopic stress-strain behaviour of this test. Figure 2.7¢c shows

a plot of coefficients of contact anisotropy a;, az and aj plotted against deviatoric strain (e = &1 —

€22). Also presented on the figure are values of the invariant stress ratio a, = (011 ~032)/(o11 + 2022)

plotted against &;. The following observations can be made with respect to the evolution of second-

order contact anisotropy under monotonic triaxial compression: The magnitude of contact anisotropy

increases during both volumetric compression and sample dilation. Even at large strain, the data shows

an increase in contact anisotropy between peak principal stress ratio and ultimate sample failure.
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The initial major principal direction of anisotropy for the sand sample was in the horizontal
plane (i.e. the plane described by axes 1 and 3) and is a consequence of the non-spherical shape of the
constituent sand particles and the vertical rodding action used to compact the sample. Upon loading,

there occurred an almost instantaneous stress-induced rotation of the major principal direction of

contact anisotropy through #/2 from the horizontal to vertical direction coincident with the direction
of major principal stress.

Figures 2.8 and 2.9 show the distribution of second-order structure described by relationship
(2.40) superimposed on directly measured E(f) values extracted at the beginning and end of the
triaxial compression test. The figures show that there are higher orders of structure apparent in the
measured data which are not accounted for by the second-order contact distribution function assumed.
Nevertheless, the visual impression given by the plots is that the predominant bias in the measured

distribution of contacts is reflected by the approximating function having the form of equation (2.40).
2.8 Contact Density and Assembly Microstructurs

Preceding sections have identified contact density as a fundamental parameter describing the
average intensity of particle packing. If an idealized granular medium is considered, it can be shown
that this parameter is related to the (macroscopic) density of the system p, (or void ratio e ) and the
average contact vector length I,.

The contact density for the system can be expreased as:

m, = 'Vé‘f, (2.48)

where NV is the number of particles in the volume V' and - is the (average) coordination number for
the assembly particles. If we consider an assembly of spheres with an average radius equal to the

average contact vector length I, then, the volume of solid material V, may be assumed to be:

-3
v, = L"%’i‘.— (2.49)

The total volume V of the assembly is related to the assembly void ratio e by virtue of:
V=V, (1+¢) (2.50)
Substituting expressions (2.49) and (2.50) into (2.48) gives:
my = —d (2.51)

dnlo(1 +e)
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Coordination number is related to the degree of redundancy in the system under conditions of
static equilibrium. The range of average coordination numbers for stable assemblies of non-bonded
particles will be a function of the size distribution and shape of the particles making up the assembly.
Systematic packings of equi-diameter spheres have coordination numbers which range from 6 to 12
(Oda, 1977). For similar I;article systems, the assembly with the lower coordination number will
generally be more mobile and better able to develop contact normal anisatropy,

The minimum coordination number for a system of particles is dictated by the requirement for
static determinancy (Horne, 1965). For example, consider a system containing N cohesionlas particles
with a total of My contacts. For this system, there are 3My /2 unknown force components for each
pair of contacts. Recognizing that there are 8N equations of static equilibrinm for sach pagticle then,

the minimum requirement for static equilibrium is:

3My

=6N (2.52)
Hence, the minimum coordination number must be:
Tmin =4 (253)

Similar calculations for two-dimensional assemblies give Ynin = 3.

It is interesting to note that frequency distributions calculated from physical asssmblies of co-

hesionless granular media show individual particle coordination numbers as low as 3 {Oda, 1977).
However, these particles do not contribute measurably to the average stress in the asembly according
to expression (2.17) since the associated contact forces are due to particle self-weight and hence, negli-
gibly small. In fact, as long as average stress is calculated according to the volume-additive expresaion
{2.17), the distinction between a passive and active contact is not warranted. Howsver, st a later
stage in the current study it is desirable to isolate the contribution of microstracture, including the
distribution of contact normals, to the assembly average stress. For exampls, a fundamental question
in the study of stress and fabric in granular media is whether or not coaxiality of stress and fabric
tensors is a valid assumption. Under conditions of static equilibrium a comparison of the fabric tensor
R and the average stress tensor o should only be based on those contacts which actively contribute
to resist loads imposed at the system boundaries. As a result of the comments made above it is
important to introduce an unambiguous definition of what const;itutm; a contact between particles.
To this end it is proposed that a contact exists at any location between particles where loads greater

than the self-weight of the contacting granules are transmitted.



2.9 Discussion

Using a statistical mechanics approach, which considers contact density together with certain
averages of statically admissible contact forces, and distributions for average contact vector lengths,
general expressions for the average stress tensor of idealized granular systems have been presented
{2.27, 2.29 and 2.30).

However, despite simplifications introduced by considering assemblies of spheres, very little in-
formation concerning distributions for E({1) is available in the literature and none for 7: (). Based
on limited experimental observation, second-order contact normal distributions may be approximated
by equations describing second-order surfaces.

At this stage the only additional information on average stress tensor expressions for granular
systems is that they must satisfy certain constraints. For example, symmetry of the second-order

stress tensor dictates that:

Oij = Oy = myl /;7??(9)”5‘(9)“”) - -/;1

FHQnQ)EQ)dO =0 i#5=1,23 (2.54)
An additional constraint is that the normalized distribution function E(f2) satisfy the condition
{2.26) and E(Sl) = 1/4 for isotropic assemblies.
The concepts and equations presented in this Chapter have a two-dimensional analogue. In
Chapter 3 relationships between average stress quantities and distributions of contact forces and
microstructure are developed by considering two-dimensional assemblies of discs as an analogue to

idealized granular systems.




CHAPTER 3
TWO-DIMENSIONAL IDEALIZED GRANULAR SYSTEMS

3.1 Introduction

Theoretical developments presented in Chapter 2 lead to expressions for the average stress tensor
of a discrete granular system in terms of certain functions describing the distribution of contact
normals, average contact lengths and average contact forces with respect to orientation,

Expression (2.27) has the two-dimensional analogue:

2
oij=my | FOL(0)E@)d  i5=1,2 ' (3.1)
Here the contact density term m, is with respect to the area of the assembly defined by its boundary
within a fixed plane cartesian coordinate space.

For an assembly of circular particles (discs) having a range of dismsters, the two-dimensional

equivalent to (2.30) is:

_ 2n :
Oij = mvlo/ ; ; (8.2)
1]

Rothenburg (1980) has proposed that for systems of particles comiprising disca with constant

diameter d,, expression (3.2) can be written as:

mudo 2ﬂ.—c c
o= 252 [ Fitomspe)a) (33)

The developments which follow are similar to Rothenburg (1980) but the more general condition

3.2 Contact Normal Distribution Functions and Fabric Tensor

3.2.1 Fourier Series Contact Normal Distribution Functions

Fourier series expressions can always be considered as an approximation to a continuous distribu-
tion such as E(f). Reference to Figure 1.11 taken from Konishi (1978) shows that the histogram data
for contact normals has a periodic appearance which may be particularly well suited to this form of
approximation. Rothenburg (1980) has suggested that for two-dimensional assemblies of discs, E(f)

may be represented by an even Fourier series expression of the form:

E(6) = 2—17'—_{1 + i a2y cos2n(0 — 02,)} (3.4)

n=1

46




Expression (3.4) satisfies the condition E(f) = E(§—) for assemblies of discs and when integrated P

over the limits 0 € 8 < 27 gives:
2m
/ E(0)df =1 (3.5)
0

The constant terms 2, represent (major) principal directions of anisotropy for contact normals.
Coefficients of anisotropy ag, reflect the intensity of contact normals in these preferred directions. It

can be seen that for isotropic assemblies azn, = 0, for n =1,2,3... and, F(f) =

1/2x.
If Fourier expressions are restricted to second Fourier components then, equation {3.4) can be

expressed equivalently as:

<
7

I

E(6) %{1 +agnin}  4,=1,2
aij = aj 1#7 (3.6)
agr =0
Here #i° = (cosd,sinf). Relationship (3.6) can be recognized as the two-dimensional analogue to the

three-dimensional contact distribution function (2.40). In this study, contact distribution functions

are expressed in Fourier series form because this format lends itself to instructive visual representation.
3.2.2 Fabric Tensor

The fabric tensor for two-dimensional assemblies is:

1 . 2 .
R.;,~=7“z;n,.n;.=mu ; E(0)ngnsdf 4,5 =1,2 (3.7)

In fact, relationship (3.7) is only strictly valid for infinite assemblies where the distribution function
E(6) is continuous. For any finite system of particles the equalities expressed ahove are approximate.

Invariant quantities can be associated with this symmetric tensor such as:

Ry my ’
R = —— = 3.8
o (5:8)
R! R, R, — R 2
R =\ —T2= (———” > "‘"‘) + Ris? (3.9)

The quantity Ry, is defined as the normal invariant component (or spherical part) of R and is propor-

tional to the first invariant of the fabric tensor. Term R, is defined as the deviatoric component and

is related to the second invariant of the deviator fabric tensor R’. For two-dimensional assemblies of

discs, the magnitude of fabric anisotropy is uniquely characterized by R,.



3.2.3 Coefficients of Contact Normal Anisotropy from Fabric Tensor

The following mathematical developments show how coefficients of contact anisotroPY and direc-
tions of anisotropy can be calculated from expression (3.7) for two-dimensional assemblies of discs.
The developments are given in some detail since the resulting equations are implemented in program
DISC to extract parameters of anisotropy from numerical simulations and are also used to evaluate
Fourier series functions of the form (3.4} as approximations to contact normal distribution data from
physical tests.

Consider a contact distribution function E(f) having no more than a second-order term, then:
1 .
E(8) = E;{1+a2 cos2(f — 62)} (3.10)

The above expression can be rewritten as:

1
E(9) = ﬁ{l + a5 cos 20 + aj sin 26}

ag cos 202

az sin 292

-4
a2
c
2

Substitution of (3.10) into (3.7) and integration of the right hand side leads to:

tan 20, =

R 2
= AR = — sin 26
Rkk MV ceV (314)
2(R11 - R22) 2
=—— = cos 28
Rix My g‘;

: t
From relations (3.9), (3.12) and (3.14) it can be seen that the second-order coefficient of contac

anisotropy is proportional to the deviatoric invariant quantity R according to:

4R, (3.15)

== Ry,

In general, 2n — order terms or lower in (3.4) can be calculated from two-dimenf‘ional 2n —~ order
{abric tensor expressions. For example, coefficient terms and directions of anisotropy for a fourth-order
iruncated Fourier series expression can be calculated from:

2m

1 .. P 3.16
Riju = D ningngnf =my | E(@)nfngngnsdd 4,k 1= 1,284 (3.16)
ceV Y
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Tedious calculations show that the fourth Fourier component of contact anisotropy is related to
the second invariant of the deviator fourth-order fabric tensor.
In general, 2n — order coefficients of anisotropy as, and directions of anisotropy 62, can be

calculated from:

(a5n)? + (a3,)?
o (3.17)
%

2
al, = — E cos 2nf
T My
ceV

2
= in2 3.18
a3, %, ‘;sm nf ( )

In summary then, it can be seen that coefficients of anisotropy in (3.4) have important physical
meaning since they represent invariant quantities of the deviator fabric tensor R’. Similarly, terms
f2,, are principal directions (eigenvectors) for these tensors.

It can be noted that expressions (3.17) for n = 1 are essentially those proposed by Curray
(1956) as a measure of the degree of preferred orientation and preferred orientation direction for
two-dimensional geological data (see expressions (1.9)). While Curray recognized the invariant nature
of ay (or M ), the connection to a tensor was not made at this time. The general expressions (3.17)
and (3.18) can be used to extract coefficients of anisotropy and directions of anisotropy from contact
distribution data such as that shown on Figure 1.11 which has been reported by Konishi (1978) from
physical tests.

Fourier series expressions of the form (3.4} having up to four cosine terms were evaluated as ap-
proximations to this data. The degree of fit was evaluated by comparing the error expression ) |err|
for each E(f) function where erry represents the error between the approximating function and the
measured frequency for class intervals k = 1,2, 3...18. Clearly the ability of this technique to resolve
coefficient terms from the 18 interval histogram data will diminish with the order of the approximat-
ing function E(f). However, analysis did show that fourth-order expressions were marginally more
accurate than second-order expressions but that the degree of fit deteriorated rapidly for more than
n = 2 terms. In addition, it was observed that coefficient terms became smaller with increasing order
and directions of anisotropy were generally non-coincident.

Based on these observations for real data it is considered that the ‘contact distribution function

E(6) for assemblies of discs with a narrow range of diameters may be approximated by:

E(9) = 51;{1+acos2(0——0(,)+bcos4(€ — 0,)} (3.19)
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The contact distribution function (3.19) is identical to that proposed by Rothenburg (1980) for as-
semblies of two-dimensional discs with the exception that coincidence of second-order directions of
anisotropy f, and fourth-order directions 8 is not a priori assumed. Components of the proposed
function are represented by the distributions shown on Figure 3.1.

Figures 3.2 and 3.3 show replotted contact frequency data from Figure 1.11 together with super-
imposed functions of the form (3.19) extracted from this information. The corresponding macroscopic
load-deformation stage for each plot can be taken from Figure 1.10. Figure 3.4 presents similar data
from a biaxial compression test which comprised a disc size-distribution identical to the simple shear
test assemblies {(Konishi, 1978). The distribution of contact normals in this plot corresponds to the
sample at about peak principal stress ratio o33/011 measured at the sample boundaries. The fully-
mobilized interparticle friction angle between discs was measured by Konishi to be about ¢, = 20°.

It should be noted that Konishi does not report if he identified between passive and active
contacts during frequency counts nor does he state whether or not disc-wall contacts were excluded in
his analysis for compression tests. Nevertheless, the plots show that fourth-order distribution functions
of the form (3.19) give a reasonable approximation to measured contact normal histogram data taken

from two-dimensional assemblies of loaded photo-elastic discs.

3.3 Contact Force Distributions and Contact Force Tensors

3.3.1 Average Contact Force Distributions

The average contact force acting at contacts with orientation § can be decomposed into an average

normal force component f,,(4) and an average tangential (or shear ) force component T+ (8). Contact

force components for a single disc are shown on I'igure 3.5,
Letting #° = (cos#,sin§) and i = (—sinf,cond) the average contact force term f;(f) can be

expressed as:
7:(6) :?fz(g)nf +?1¢:(0)t: Vo 1,2 (3'20)

Subsequent theoretical development shows that the decomposition according to {3.20) facilitates
examination of the contributions of interparticle tangential and normal force to the shear capacity of
the assembly at the macroscale. A similar decomposition is possible in three dimensions except that
the tangential direction £° is not uniquely related to #°.

Normal contact forces are considered positive if they are tensile {only possible for bonded par-
ticles). Tangential contact forces are considered positive if they induce counter-clockwise rotation of

the disc. Positive orientations are shown on Figure 3.5.
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Figure 3.5 Normal and Tangential (Shear) Contact Force Componeits




The general expression for the average stress tensor (3.2) can now be rewritten as:

2m
oij = myly / {7;nfn§. + ?’;t;sn.;} E{0) do (3.21)
0

Rothenburg (1980) has proposed that distributions for contact force components in two-

dimensional particulate systems may be represented by [ourier series expressions of the form:
y P. y I

Tfl(ﬂ) =f2{l+a,cos2(d —~ 07)} (3.22)

_:(0) =f2 {ay ~ arsin2(0 — 6;)} {3.23)

The constant term f2 in (3.22) and (3.23) represents the average normal contact force from all
assembly contacts and terms ay,, a,, and a; are non-dimensional coefficients of contact force anisotropy.
Terms ; and 6; represent certain preferred directions for contact force distributions and are called
{ major ) principal directions of contact force antsotropy. The (major) principal direction of normal
contact force anisotropy #; is chosen such that «,, always assumes a positive value. At this point no
information is available to establish the relationship between 05 and 6,.

Average contact force distributions are shown on Figure 3.6 assuming f; = §;. Changing the
sign of the coefficient term a; results in distributions for average tangential contact forces which are
orthogonal to those shown on the figure. For discussion purposes in the following text, the term
direction of contact force anisotropy will refer to 0.

Expression (3.23) satisfies the constraint that distributions for tangential contact forces and con-
tact normals E(f) must result in moment equilibrium for assemblies comprising discs.

Consider that for all N discs, moment equilibrium requires:

Ty

N
oS =0 (3.24)

k=1n=1

If expressions for average tangential contact forces f,(f) and contact distribution E() are sub-

stituted into (3.24) and the assemnbly considered in the limit then, moment equilibrium requires that:

. 2” T (0)E(@®)dd =0 (3.25)

¢}

The constant term a, is required in {3.23) to satisfy the general case of non-coincidence of
tangential contact force anisotropy and anisotropy of contact normals. Plysically, non-zero values
of a, correspond to a situation in which a non-symmetrical distribution of shear contact forces is

required to compensate for the lack of contact normals in the direction of maximum loading. The
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relative orientations of distributions describing tangential contact forces, contact normals and stress
when this condition occurs are idealized on Ifigure 3.7.
Further examination of (3.23) and (3.25) reveals that a,, is not an independent parameter but is

related to coefficients a and a; by:

—aag

ay —

sin 2{8,, ~ 0;) {3.26)

It is easily seen that the coefficient term a, reduces to zero for f; = i,
A simple model for limiting shear between cohesionless particles is a Coulomb friction law of the

form:
f
fi

where p is the maximum interparticle friction coefficient. Relationships {3.22) and {3.23) togsther

=p {3.27)

max

with simplifying assumptions can be used to predict the distribution of the average mabslized friction

coeflicient 7,,.3(f#). For example, assuming a,, = 0 is reasonable for these systems, then:

a¢sin2(f — ;)
1+ a,cos2(f —0y)

ﬁmob (0) = (3’28)

If principal axes for f,,(6) and 7, (§) are coincident or orthogonal to each other (i.o. 4 - o + nx/2,
for n = 0,1,2,3) then, expression (3.28) implies that average tangential contact forees vanizh in the

direction of normal contact force anisotropy.
3.3.2 Contact Force Tensors

The distributions for average normal contact forces 72(0) and average tangenbial contact forces
[:(0) are related to certain second-order symmetric tensors similar to the relatinnship between E(f)
and the second-order fabric tensor R.

A normal contact force tensor Fy can be equated to the distribution of normal contact forces

ilescribed by (3.22) according to:
fo 2T
Fy,, = #/ (14 an cos2(8 — 87))ning db 4,7 1,2 (3.29)
0

i'he normal contact force tensor can be approximated from listogram data containing N, intervals

Fr, = > Tald)nin (3.30)




mre 3.7 Relative Orientations of Distributions describing Tangential Contact Porces,
Contact Normals and Assembly Stress for a, # 0
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The following relationships now emerge:

- e
4/ _"_Jz_'LL av/ (Ml) + (Fu,,)*
anp = =

FNM; FNkk

(3.31)

2F
tan26; = ——M (3.32)
d (FNu - FN))J
fn=Fn,, (3'33)

The above derivations confirm that a, and 8; have important physical meaning. The coeflicient
term a, is related to the second invariant of the deviator normal force fensor. Tern #; represents
the (major) principal direction (or an eigenvector) for this tensor. An isotropic distribution of normal
contact forces corresponds to tensor quantities having terms f36;,.
Now consider the distribution of average tangential contact forces described by the relationship
(3.23). In a similar manner, tensorial quantities can be related to this distribution according to:

/s

Fr, = 2w

2%
/(; (aw — arsin2(d — 8;))tins db (3.34)

Tangential contact force tensor quantities are estimated from measured data in nupmerical simulabions

as follows:
1 —=C e -
Fr, = Fth(a)ti né (3.35)

g 8,

Inspection of expressions {3.34) and (3.35) shows that the tangential contact force tensor is a
deviator tensor, hence Fr = FZ.. The coefficient term a, can be equated to contack force tensor

quantities as follows:

FTu - FTJ.:'
a, = 32— 12

3.36
T, (3.36)

Should a, = 0 then, tensor Fr is a symmetric deviator tensor and coefficient term a, and principal
directions of tangential contact force anisotropy d; can be calculated from:
g e
Tii o~ Tij Fry, —Fr, o 2
AV T AV () ()

ag = = - - 3.37
‘ FTkk FNkk ( )

2F
tan 20 = —————2_ 3.38
’ (FTu - FNT)) ( )

Expressions (3.30) and (3.35) show that tensorial quuntities ¥y and Fr are independent of the

furm of the average contact force distributions assumed. Relationships presented in this section can
be used extract coefficients of contact force anisotropy and directions of anisotropy from contact force

data for loaded assemblies of discs.



3.3.3 Contact Force Distributions from Laboratory Tests

Average (total) contact forces with respect to orientation have been reported by Oda and Konishi
(1974b) and Konishi (1978) for simple shear and biaxial compression lests. Their data allows the ratio
F7(8)/f° to be plotted against contact orientation. Here f°(f) is the average total contact force for
each group and f° the average contact force from all assembly contacts. Irequency distribution data
for the mobilized interparticle friction coefficient pmop = |f¢/f5| showed that 1, was unimodal and
peaked strongly at pmop = O (see Figure 1.12). Consequently, the measured normalized conlach force

distribution data presented on Figures 3.8 and 3.9 is considered equivalent to fi,(/?)* i,

Coefficients of anisotropy and directions of anisotropy have been calculated {rom the frequency
data using relationships from the previous section. The approximating curves are superimposed on
the original data. The figures show that the second-order Fourler series expression for f,.(ri) {3.22)
gives a good approximation to the measured data. Unfortunately, Oda and Konishi have not reported
the results of their tests in a manner which allows confirmation of the distribution function [,(0)
assumed for average tangential (shear) contact forces. However, the results of numerical simulations
using two-dimensional assemblies of discs reported in Chapter 5 support both proposed expreasions

(3.22) and (3.23).

3.4 Assembly Stress and Anisotropy

3.4.1 Theoretical Developments

Distribution functions for average contact normal and tangential contact forces have been pro-
posed in Section 3.3.1. These distribution functions together with a sccond-order contact distribution
function of the form (3.10) lead to relatively simple relationships between invarianl average stress
quantities and invariant quantities describing anisotropy of contact forces and microstructure for as-

zemblies of discs.

The following development is similar to that reported by Rothenburg (1980): Second-order Fourier
serics expressions for fy(8), f;(8) and E() can be substituted into {3.21) and integration performed
over the limits 0 < 4 < 27, Restriction of distribution functions to no more than second Fourier com-

ponents is consistent with the observation that stress terms oy, are second-order tensorial quantities.
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Assuming a, = 0, average stress quantities can now be approximated by the following relations:

mylof2 1
011 =— 1+ 5 (acos26, + a, cos 20, + a, cos 20, + aay, cos 2(0, — ;)
Miplo O 1
022 =;2°—-’i {1,— 3 (acos 28, + a, cos28; + a, cos 20, - aa,, cos2(f, — Hf)]} (3.39)
—[ o
o12 =T"—4°—fi{a sin 28, + a, sin 267 + a; sin 20:}
21 =012

Boundary stresses can be described by the following invariant quantities associated with the Mohr

circle of stress:
oo (t252) a0

2
o :\/ (a’u - 0'22) $oyg2 (3.41)

n 1 ormal o rostatic component of stress and o, the devtaforic component.
The term o, is the normal or hydrostat t of st and o, the d ¢ nt

Principal stress directions can be calculated from:

011 — 022 iz

cos2f, = s sin 26, =

3.42
20 ay ( )

Relations (3.39) and (3.40) give:

1,fe
Op = Cnlz_f.’k{l—*— EE;—ECOSZ(HU,‘_OI)} (34.‘)

The results of tedious calculations show that relationship (3.43) is exact when integration of {3.21)
is carried out using all fourier components in expressions for f., (), /:{#] aml E{#). Second-order
terms a and a, extracted from experimental data suggests that these valnes are typically less than
0.5. Consequently, only a small error may be anticipated by considering the simplified expression for

o, proposed by Rothenburg (1980):

T fo
oy = ____m"lz"f" (5.44)

Neglecting product terms aa, in equations (3.39) and substitution into (3.41) leads to:

mo L fo » S
ity = —"—4(&’- a? + a2 + a? + 2aa, cos2(f, — ) + 2aas cos2(0, ~ 00} + 2ugacvos2{d; - ) {3.45)

The collection of terms in front of the brackets can be eliminated if an tnrariont atress ratio parameter

it 18 introduced such that:

- 1 e o B
g b= 3 a? + a2 + a? + 2aa, cos2(0, — ;) + 2aa; cos 2(0, ~ 0,) + 2ayap cos2(f — 0) (3.46)

In
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If directions of anisotropy for contact normals and contact forces are coaxial (i.e. 8, =8, =0y = 6; )

then (3.46) is simplified to:

Gy = (a +a, + at) (3.47)

The average stress ratio opa/0y; can also be deduced from relationships (3.39). Specifically:

T2 — 2 (acos 26, + ap, cos 205 + a; cos 26; — aa,, cos 2(0, — 01))

(3.48)

11
2 @
o11 1+ ,%, (acos 28, + ay, cos 267 + ay cos 26; + aay, cos 2(0, — )

Again, expressions are simplified if coaxial directions are assumed and product terms aa,, consid-

ered to be negligible. For this condition, equation (3.48) reduces to:

—2{e+a, + as) cos26,
+ 5 (a+ a, + az) cos 26,

022

- i (3.49)

g11

Fundamental concepts relating average stress to fabric and contact force anisotropy are contained
in expressions {3.44) and (3.47) which have been reported in the same form by Rothenburg (1980).
For example, the hydrostatic compbnent oy, of the average stress tensor is proportional to the average
normal contact force f2 within the assembly. However, the invariant stress ratio a, shows that the
shear capacity of the assembly is due to contributions of contact anisotropy e, average normal contact
force anisotropy a, and, average tangential contact force anisotropy a:.

The fundamental relationships introduced above can also be expressed in tensorial form. To
simplify tensorial expressions it is convenient to introduce reduced deviator tenmsorial quantities for
fabric and contact force tensors. These reduced tensors are related to tensors R, F y and Fr according
to:

'I_{:J. :ERﬁ_ o B 8;
ke/2  Rgx/2
Fy, = Py Fay bij
Y Fw/2 Fn,/2

FI _ F;l‘;» _ FT.',' b
i FNI:I: /2 FNkk /2 Y

(3.50)

(3.51)

(3.52)

Neglecting second-order products of these tensors, stress components g;; can now be expressed

Oiy = Jn{&j + E"{j + F:’V,’j + F"T.‘j} (3'53)

where:

_ LRk Fy,,
2

In

(3.54)

64




Expressing coefficients of anisotropy in equivalent reduced tensorial form, and rearranging (3.47),

leads to the following expression for the deviatoric stress component:

ot = %{\/EJE] + \/F,N.‘,‘FIN.',‘ + \/F,Tijf;‘ij} (3'55)

While mathematical developments leading to expressions (3.53) through (3.55) have been re-

' stricted to two-dimensional systems, the general form of these relationships is preserved for three-

dimensional assemblies comprising spherical particles.
3.4.2 Contact Normal Anisotropy and Stress from Laboratory Tests

Some insight into the relationship between average stress and contact anisotropy can be gained
from analysis of test data reported by Oda and Konishi (1974b) and Konishi (1978) for assemblies of
photo-elastic discs.

Figures 3.10a and 3.10b show coefficients of contact anisotropy a, b and invariant stress ratio
8, plotted against shear distortion measured at the sample boundaries. Coefficient terms a and b
have been calculated from the histogram data on Figure 1.11 and @, from data reported by Oda and
Konishi.

The following procedure was used by Oda and Konishi to estimate stresses acting over subregions
of photo-elastic disc assemblies: A family of lines was drawn across the sample and normal and shear
forces per unit length of line calculated from selected contact forces acting on particles intersected
by the transect lines. Several lines were considered to arrive at a representative shear force Fr and
normal force Fiy per unit length of line. From two sets of orthogonal lines the average stress tensor for
the subassembly was approximated from Fy = oijnin; and Fr = oy;tin;. The researchers restricted
stress calculations and the determination of contact normal distributions to interior locations of the
disc assemblies in order to minimize the influence of the rigid-wall boundaries. However, they do not
indicate in the referenced literature if calculated stress quantities and contact distributions represent
exactly the same subassembly volumes. In addition, a criterion to include only load-carrying (active)

contacts in the calculation of the contact normal distribution is not mentioned. Nevertheless, assuming

for the moment that a comparison of contact coefficient terms and a, is valid then, two important

observations can be made from Figure 3.10 concerning the relationship between second-order tensors

R and 0.

1) The behaviour of a and a, is similar. Generally, increases in contact anisotropy coincide with
increases in sample strength as measured by a,. Similarly, where there is a drop in contact

anisotropy, there is a corresponding loss in assembly shear capacity.
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2) The major principal direction of contact anisotropy appears to follow the major principal stress

direction. At relatively large strains both directions appear coincident.

The strong correlation between parameters equivalent to a and a, and coincidence of principal
directions f, and 6, has been reported by Konishi (1978). The observation that a is less than a, and
strongly correlated to assembly shear capacity is consistent with expression (3.46) which has been
arrived at from theoretical conside;ations.

Oda and Konishi do not report distributions of normal and tangential contact forces for their
tests. However, if the plots on Figure 3.8 are assumed to approximate normal contact forces during
simple shear, then, the principal direction of contact normal force 6; appears sensibly coincident with
8,. The same statement can be made based on distributions for contacts and contact forces shown on

Figures 3.4 and 3.9 taken from the results of biaxial compression tests (major principal stress direction

at 0, = 7/2 ).

The relationship of the fourth-order coefficient of anisotropy b to the shear capacity of the system is

less clear. Figure 3.10 shows that as the initial dense assembly dilates, b increases in value. Conversely,
the initially loose assembly shows that the early contact geometry associated with b is attepuated with
increasing sample distortion. The following interpretation is offered which is due in part to insight
gained from numerical simulations of assemblies of discs reported in Chapter 5:

Theoretical developments leading to expression (3.47) pointed out that b is, in fact, an invariant
quantity of a fourth-order contact tensor. As a result, the evolution of higher-order contact geometry
such as that described by b is likely an indirect response to imposed boundary disturbances which are
described by a second-order average (stress) tensor. Changes in b are likely due to (as yet) undefined
stability requirements which are pronounced when the system has a high degree of mobility. Significant
changes in b and /or relatively large values comparable to a only occur if the sample is initially loose
or reaches a lower contact density through dilation. In contrast, dramatic changes in a occur in both
tests irrespective of assembly density.

Principal directions plotted on Figure 3.10c and 3.10d show that in general, §, and 8, are non-

coincident.
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CHAPTER 4
NUMERICAL SIMULATION OF TWO-DIMIENSIONAL ASSKMBLIES OF DISCS

4.1 Introduction

The Distinct Element Method and its computer implementation Lo numerically simnlate assem-
blies of discs have been reported by Strack and Cundall {1974}, Cundall {1979), and Coundall and
Strack (1979a,b,c). These researchers developed the compuier program IALL and atlempted Lo vali-

date its usefulness as a research tool to study the mechanical behaviour of idealizsd grannlar systems.

A description of the validation exercises has been briefly ontlined in Hection 155
The numerical simulation of two-dimensional assemblies of discs has scine important advantages
over comparable physical experiments such as those reported by Dda and Konisli {1974a, 1974D)

These advantages include the following:

1} Tests can be performed which examine assemblies having a range of particle sizes

and particle properties.

2) Parametric studies can be undertaken which allow parametera Jesribung particle
interactions to be isolated and their contribution to Lhe mac apic behavionr of

these systems evaluated.

3) Tests which are difficult to perform in the laboratory, such as veversal of prindipal

stress axes, can be easily accommodated in these simulationa,

4} Data extraction, including distributions of contact normala and contact ferce come

ponents and the like, is easily automated.

5) Assembly configurations can be stored at any stage in a test and vestarted at o later

date without disturbing the original condition of the saniyple.
6) Boundary conditions imposed on test assemblies are perfectly conirolled.

An important advantage of the numerical experiments reported in Lhis study over other sim-
ulations, such as finite element models representing coutinua, is that the macroscopic response of

the system is dictated by the micromechanical behaviour of the discrete media. Other analytical
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approaches have the drawback that macroscale hypotlieses, including constitutive relations and as-
sociated flow rules, must be assumed and their implementation may obscure or misrepresent actual
physical behaviour.

The current investigation uses a heavily-modified version of the prototype program BALL, called

DISC.

4.2 The Distinct Element Method (DEM)

4.2.1 General

The following sections outline the fundamental agpects of the 13

Pipet FKlenent Maethod U,')['J?\"])

as reported by Strack and Cundall (1978), Cundall and Strack (1479a,c)

The DEM employs an explicit time-finite-difference

heme in whish each «aloulation eyele in-

cludes the application of Newton’s Second Law to Lhe centraid o each dize Lallowed by applization of
PP Pl

two simple force-displacement laws at all disc contacta. By keéping the timesiep simall, distur

bances initiating at the assembly boundaries will propagate at a rate st greater than the distance

between contacting disc centres during a calculation cyrle. The dise acre

sivns aned velonities ealou-
lated from Newton’s Second Law are assumed to be comztant over A and the net {orves and moment
acting on each disc are updated from force-displacement lawy applied at the coatacts with neighbouring

discs.

In actual fact, the DEM models a dynamic transient mechanical svstem 4 ran be hnagined

as a network of lumped-mass-dashpot elements in which linear springs connert dise shaped mass
Although the system is dynamic, the transient state approaches a static enquililayum constisiao il loading
rates at the sample boundaries are kept low enough that inertial dise forees are alwasa a stmall fraction
of the average contact forces acting through the assembly. Kinectic energy s dissipated throngh the
introduction of artificial damping, without which, the approximation to a sfatis eqmidibaingi condition

would not be achieved.

4.2.2 Disc Geometry

Consider the two contacting discs shown on Figure 4.1 haviug radit /g and Hyuo A physical
rontact exists when D < R4 + Rp. The contact between discs A and [ iz conzidered to e al point
! Jocated equi-distant from the points P4 and Pp along the branch length connecting the controid
#[ disc A to the centroid of disc B. If very stiff contacts are considered then, the overlap between

" particles is very small compared to the diameters of the contacting discs.
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The geometry of contacting particles is completely described by the location of the disc centroids
Zai, TBi, disc rotations 84, 85 and disc radii (indicial operations are with respect to ¢ = 1,2 ). A
finite-difference scheme is used to relate changes in geometry at the end of each time-step to current
translational and angular velocities £ 4;, £p;, 6",\ and (}.“, Contact digplacements for the overlapping
discs are calculated based on the relative velocities of point 24 with respect Lo poind Pp.

It is convenient to resolve incremental contact displacements which eceur over cach time-step into
normal and tangential components referenced to the normal and tangential contact vectors for disc

A. As before, these contact vectors are denoted as #° = (cos §,sin 0} and [ s {~ aiu#, cosd).

4.2.3 Equations of Motion from Newton’s Second Law

Newton’s Second Law applied to a disc can be written as:
m(ii)Nz(Fi)N 7:=1,2

. (1.1)
1(0)N = (M)N

Here m and I represent the mass and moment of inertia of the disc and (F})y and (M), the net force

components and moment acting at the disc centroid at the beginning of the time-step correaponding

to ty. Net force components F; and the total moment M acting at a disc centronl are zhown on
Figure 4.2. The figure shows positive orientations for these parameters. Forces I}, and F, represent
normal and tangential (shear) contact forces.

Assuming that disc accelerations Z; and § at ty are constant over the interval ty . L W By s

then, disc velocities can be calculated from:

. . F;)ny At
(Ii)N+1/2 = (Ii)N—1/2 %

(1.2)
(é)N+1/2 = (é)N—l/Z + LA{)ILVE

The coordinates of the disc centroid and disc rotation are then calculated at the end of the

time-step txy 41 according to:

(=) 41 = (=) + <(531‘)N+1/2) At

Onsr= @O + ((e')N+1 /2)At

The finite-difference scheme employed to implement changes in geometry withont considering

damping is summarized on Figure 4.3.
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Figure 4.1  Geometry of Contacting Discs
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Figure 4.2  Disc Forces and Moment
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. {(F)v At
= (&)No1jat —T—

| (42)
= (‘9)N—1/2 + (M)INAt

= (z:)y + | (Z)n41/2 | A
(4.3)

=(0)y+ ((0')”“/2 At

(O stored value at start of calculation cycle

@ stored value at end of calculation cycle

Figure 4.3  Finite-Difference Scheme for Changes in Disc Location and Rotation




4.2.4 Force-Displacement Laws

Following application of Newton’s Second Law to all discs, contact force components are updated
using:

(Fo)yir = (Fo)y + (AF)y = (Fa)y + kn(An)yiy/2

(4.4)
(Fo)yir = (Fo)y + (AF) y = (Fo)y + ko (A8) i1/

Here An and As refer to incremental normal and tangential contact displacements at a contact
with normal and tangential contact stiffnesses k,, and k,. Contact displacements are calculated from

the current relative disc velocities (4.2) using the following finite-difference notation:

(An)N+1/2 = ((iB.- - :'CA.')N+1/2) n{At 1=1,2
(4.5)

(A)ny1)2= (((isi - iAi)N—f—l/Z) t:—(§aRa+ 05 RB)N+1/2> At

The finite-difference scheme for the application of the force-displacement laws is shown on Figure

4.4 without damping.

A Coulomb-type friction law is employed in order to allow particles to slip once a threshold
tangential force level is achieved. The friction criterion for cohesionless contacts can be expressed
as |(Fy)|inaze = |Fnse|- Term p refers to the maximum interparticle friction coefficient. If two discs
with different x values are encountered the minimum value is used in the computation. If calculations
show that the magnitude of the critical tangential shear force has been exceeded, then |(F,)|maz is
used together with the sign of the computed excess shear force. Should contacting discs have different
stiffnesses for k, and k, then, the contact stiffnesses in (4.4) are calculated assuming that stiffness

components act in series.

The final step in any calculation cycle is updating of disc forces F; and moment M which is done

by summing all contact force components and moments in the following manner:

ng

(Ffar = 2 (Eadegan + Pty

n=1

(M)};H-l = ’kni; ((F’)N—H)

(4.6)

In the above relationship, ny refers to the contacts associated with disc k having radius r*.

The cycle procedure is then repeated with the updated disc forces and moments substituted into

the expressions for changes in disc geometry described in Section 4.2.3.

73




)} !

ft— AL et Al —pn

) , . (F)w At
z; ’ (&)nt172 = (E)n-1j2 m (4.2)
. . . M)NAt
0 Oysr2= Oyorjat [-"Tﬁ
. L t=1,2
N-1 N-}2 N N+1 N+1

(8, — iAi)N+1/2 n{At

(¢B: — i'A-')N+1/2 t;

~(64RA+0pRp)yy1jn ) AL

= (Fa)y + (AF)y = (Fa)y + kn(Bn)y11/2
= (F)y + (AF)y = (F)y +ks(B8)y 4172

(4.4)

Nk
= Z (Fn) g1 + (F)ysati
n=1
ny

r* Z (F-)N+1

n=1

(4.6)

(O stored value at start of calculation cycle

@ stored value at end of calculation cycle

Figure 4.4  Finite-Difference Scheme for Application of Force-Displacement Laws




4.2.5 Damping

The DEM must include a provision for damping in order that the assembly of discs can approach
a state of static equilibrium under all conditions.
Three forms of damping have been introduced by Strack and Cundall (1978} and are included in

the prototype program BALL and the current version DISC. They are:

1) Contact damping which acts on the relative velocities at disc contacts in both
normal and tangential directions. Contact damping may be envisaged as dashpots

which act in parallel with the linear springs describing contact stiffnesses.

Global damping which acts on the absolute velocities of the discs and can be envia-

aged as dashpots which connect each disc to a fixed frame of reference.

Friction damping: Tangential contact forces are restricted according to the inkers
particle friction criterion described in Section 4.2.4. Consequently, whenever thia
value is substituted into the force-displacement expressions it represents a damping
mechanism on interparticle tangential displacements. In order not to ¢canse exces.
sive tangential damping when |(F,}|maz is achieved, the tangential contact damping

is not applied during sliding.

Contact damping coeficients are related to the contact stiffnesses k,, and k, through a coeflicient

of proportionality g :
Cn :ﬁkn

cs =Pk,

Normal and tangential contact damping forces are calculated from:

(4.7)

(Dn)n =c¢n [((i‘Bi - i‘A.»)N_l/2> nf} 1=1,2

(D")N =C, [((IB‘ — i:A")N-—l/2> tf — (éARA + énRﬂ)NQ_l/g

(4.8)

Contributions of contact damping are resolved into components I; and added to the force term

n (4.2). Tangential contact force damping is also included in the moment M. Hence expressions (4.2)

Oearsa= ot [(F) ]
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(4.9)




It should be noted that there is a half time-step error between the force and moment sums in
(4.9) and terms (D,), and {D,),. The original authors consider this error negligible.
Global damping coefficients are related to the mass and moment of inertia of each disc through

a coefficient of proportionality o:

(4.10)
cr =al

The original equation of motion can now be rewritten to include both contact and global damping

contributions:

(4.11)

Letting:

(ii)N+l/2 + (ii)N—1/2

Onsrje + O)y-ry2

_ (ii)N+1/2 - (i‘)N—l/Z
At

(é)N+1/2 - (é)N—l/Z
At

)y =
leads to revised equations of motion in the form:

b oyl = a02) ¢ (B4 D)y St
FINt1/z = 1+ aht)2
. (4.14)
: (H)N—I/Z(l — alt/2) + (M) Dt/m

Ows1/2 1+adt/2

It is easily seen that setting o = 0 and # = 0 leads to the original equations of motion (4.2)
without the option of damping.
The lumped-mass linear spring and dashpot system which is used in the current version of DISC

to model the behaviour of cohesionless discs is summarized on Figure 4.5.

4.2.6 Additional Comments on the DEM

The contact force-displacement laws described in Section 4.2.4 have been adopted because they are
simple. It should be noted that the principal purpose of using the DEM technique in this investigation
# to verify formulations developed in earlier chapters which are independent of the contact model
=mployed. However, it is of interest to note that other contact models, such as those that incorporate
asn-linear contact stiffnesses, could easily be used in the numerical technique. The use of linear (or

ausn-linear) springs is not unreasonable if one considers that contact behaviour between real granular
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cg (switched off for IF,[‘#'IF,, ,u.l)

Figure 4.5 Schematic Showing Principal Rheological Elementa
of the Distinct Element Method for Colesionjess Disca
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particles is likely to be governed by surface asperities anid consequently is unrelated to the dimensions

of the particles (as would be the case of truly elastic particl

The finite-difference expressions presented in Lhis chapter can algo bhe modified to include body

forces (i.e. gravity). These forces can be added to the right-hand «ide of eyuation (1.1). For simplicity,

gravity forces were not considered in this study since, for the =mall

could be assumed to be negligible compared to the stresses hmposed wn the system. In addition,
weightless particles eliminate the need to differentiate between active and passive conlaris m program
DISC during contact distribution data extraction.

The DEM technique can also be formulated to consider bondesd gibliee ol e Por these
systems the Coulomb-type interparticle friction criterion can be modified 1o wehole a very large
coliesion term.

The description of the DEM method presented in this Chuajier sust raise the guestion ol the
validity of the mechanisms through which energy imparted al the system beand: s liaarpatid inters
nally. In real systems, low frequency damping (which is a necessary part of the A tecdinique) 1 oot
present. Consequently, the results of numerical simulations wsing this Levhnigue G propoge Dicrome-
chanical models relating global stress and strain through energy consmderations miust be nndertaken
with caution. In the current investigation the DEM techuique and in tinplenisntation through pro-
gram DISC is restricted to validating aspects of micromechanical behavinng whizh depend only on

laws of static equilibrium.

4.3 Program DISC

4.3.1 Introduction

The current investigation uses a heavily-modified version of ihe poograns BALL saiginally devel-
. oped by Strack and Cundall (1978). The modifications were miade for twn pringipal reasms

First, the original program BALL was developed for exriuinm on 32 bl wini-computers with
restricted Internal core (i.e. 64K words). Consequently, the orinal FOITTRAN code amd alyorithm
structure were written to preserve CPU memory and minimize floating point arithometic operations.
The program DISC has been written in FORTRAN but operates o pronframe computers (in this

=stuily a 36 bit Honeywell DPS/8). As a result, thie program DI5C has a voech shnpler structure since

mivinory requirements (typically 170K words) were not a constraint and no exeeution: tine savings are

+sulized by incorporating the integer arithmetic operations found i the prototype BALL.
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The second major reason for modifying the original program was to extract data which would
provide an independent verification of the theorics propuosed in Chapler 3.

Other major differences between the programs should be mentioned: For example; to eliminate
rigid-wall boundary effects on assemblies of discs, program DISC conmiderz only near-circular assem-

blies of particles whose boundaries are defined by perimeter i In addition, the application of

prescribed boundary disturbances to these assemblies differs from Lhe protetype program BALL in
order to improve execution time.

Nevertheless, while bookkeeping, data extraction and boundary contesl in program SO are very

different from program BALL, the implementation of the DEM, as reported Ly ack and Cupndall

(1978), has been essentially preserved in the current version of DISC,

A computer listing of program DISC can be found in Appendiz A iogether with program

AUTODISC which is a separate program used to generate initial uncompacied disc azsemblies.

The following sections summarize important aspects of both programs.
4.3.2 Description of Program DISC

4.3.2.1 General

Program DISC models the mechanical behaviour of a near-civcular s of fwo-dimenstonal

discs using the DEM numerical technique. A visual representation of a mmall asseinbly of dizce gener-
ated by program DISC is shown on Figure 4.6.
The assembly is contained within a series of boundary discs identified by the dark dizes o the

figure. The centre of each boundary disc represents the vertex of a convex polygon comprizing st

;1ig|lf.--

line segments joining boundary disc centres. At the beginning of cach calenlation cy

e, veloct Ly or

force components are applied to the centre of each boundary disc in resporise to presevibed homndary
stress and/or strain-rate conditions. As the system deforms, the asserbly bonndary dises are updated.
For example, should the centre of an interior located disc intercept wny straight-line houndary aegment

then, it becomes a boundary disc.

4.3.2.2 Disc Generation

Prior to initial execution of program DISC it is necessary to generate an azsembly of dises and to
locate these discs with respect to a fixed-rectangular coordinate space. Diac generation is accomplished
through the execution of a separate program called AUTODISC. This program contalus a random

number generator which is used to place non-overlaping discs ut random radial locations within a

79




Boundary Discs

)

28810
o.m,.o_..o.

@
3
A

@2
o«

@22
w.;.. @,

s
i@
)
)
)

5

L X
o9
10
-’.\.; v

W
T L)
09

Two-Dimensional Assembly of Compacted Discs

Figure 4.6

80



circular region. The selection of disc sizes is taken from a prescribed particle size-distribution. The
result of the operations just described is a very loose assembly of discs whose density diminishes
with distance from the sample centre. An example of such an assembly is given on Figure 4.7. The
nonhomogenous sample generation was adopted purposely so that during the subsequent compaction
stage, a relatively homogenous assembly was created. The problem with a disc generating scheme
which locates discs with respect to randomly selected coordinates z; is that, during compaction, the
outer layers of the assembly are compacted to a greafer extent than interior located discs and a
significant density gradient through the sample resuits,

Also shown on Figure 4.7 is the grid of boics generated by program AUTODISC as part of
the bookkeeping scheme used to trace the 111<)vcnwn£,i;f iizes and identify contacting neighbours and
discs in close proximity to each other during exscutiun of program DISC. Following disc generation,
the assembly is compacted using program DISC which wmplenients the nunierical scheme described in
Section 4.2. It is this compacted assembly which is the atarting point for the majority of tests reported

in this study.

4.3.2.3 General Organization of Program DISC

The main algorithm flow chart for program DISC is illnstrated on Figure 4.8,

Program initialization is carried out through Subroutine INUT'F which does the following:

1) Input contents of the configuration file containing crrent aszanbly data, Included in this file
are all current disc values for z;, #;, 6, 6, F; and M and a list of all contacts together with their

associated contact forces Fy, F, and total contact normnal and tangential digplacements.
2) Input contents of a file describing disc properties.
3) Input damping coefficients  and f.
4) Calculate certain fixed parameters such as the time-step Al
5) Input test program details including number of execution cycles, cycle interval for data extraction

and prescribed boundary conditions.

The DEM as outlined in previous sections is impleniented in Subsontine CYCLE. Bach caleulation
cycle begins with the Subroutine SRVMOT which applies velovitics or forces to each boundary disc
according to the prescribed boundary conditions. Next, Subroutine MOTION is executed which
applies expressions (4.14) and (4.3) to each disc in the assembly. Subroutine FORD follows during

which the force-displacement laws (4.4 and 4.5) are applied to cach disc and disc forces and moment
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updated according to {4.6). If the cycle count corresponds to a prescribed value then, Subroutine
EXTRACT is executed which loads a data file with assembly information at that particular stage of
the test.

Once the total number of calculation cycles has been completed, the assembly configuration file

is updated and becomes the data source for subscquent execution(s) of program DISC.

4.3.2.4 Disc Properties and Units

Program DISC accommeodates np to 50 disc types. Each disc type identifies a set of disc properties
which include a radius r, density p, normal and tangential contact stiffnesses k,, and k,, and coefficient

of interparticle friction p. The intensity of conts

and global damping is determined by the single

set of damping constants @ and A deacribed in Section 4.2.5,

The magnitude of the values describing disc radii, devgity, stillnesses, and damping constants are

similar to those reported by Strack and Cundall {1978) and de nof represent any physical units. The

values assigned to these parameters were chosen to ensure that disc overlaps during program execution

were very small and numerical results were stable and accurate,

4.3.2.5 Calculation of Time-Step

As a consequence of the explicit nature of the numerical scheme cimployed in program DISC, a
time-step must be selected which is small enough that the numerical simulation jg stable. The time-
step At is calculated as a fraction of a critical time-step At; which in turn s estimated from 4 single

degree-of-freedom mass-spring model according to:

At, =2 mmin/kn (4. 1,5)

llere, Mpin represents the mass of the smallest disc in the assembly and k,, the conresponding normal

linear contact stiffness.

4.3.2.86 Average Stress

Program DISC allows the investigator to trace changes in the average stress tensor o for the
entire assembly and for selected interior sub-assemblies at any number of stages in the test.

The average stress tensor is conveniently calculated from:

1 ..
oy = V Z ffr; 1,7=1,2 (4.16)
ceV
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SUBROUTINE INITP

read instruction file

/

read conliguration file

initialize program

SUBROUTINE CYCLE

N < NCYCLES 7

; P

update configuration file

SUBROUTINE SRVMOT

apply prescribed boundary
conditions to perimeter
discs

SUBROUTINE MOTION

implement equations of motion
(4.14) and (4.3) to interior
located discs

SUBROUTINE FORD

implement force-displacement
laws and update disc forces
and moments according to
equations (4.4} through (4.6)

1

extract assembly data 7

SUBROUTINE EXTRACT

extract assembly data

and load data file

Figure 4.8

Program DISC Flow Chart
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which follows from (2.17). In the above expression, r represents the dise radius corresponding to the
contact ¢. The volume term V in (4.16) corresponding to the entive assembly is approximated by the
area contained by the convex-polygon of line seyments connecting adjoining boundary disc centroids.

Sub-assemblies comprise discs which fall within and on a specilied cirdle (such as the dashed circle on

Figure 4.6). The volume term V for these sub-asscmblies i approsinialed by the area of the circle.

To minimize the influence of boundary discs on the cadenlaiion of o7, cintacts between discs which

are located on the perimeter of the entire assembly are not considerad in expression {4.16),

Normal and deviatoric invariant stress values are calenlated s 10§ and {3.41) re-

srding Lo

spectively. Principal stress directions are calculated from ex

4.3.2.7 Average Strain

A measure of sample deformation is required to complete thy mary

seiption of the stvess-

Yarninsnt of boundary

strain behaviour of the assembly. Program DISC monitors the {$o1al}

at pre-selected cycle intervals and converts these displacements ints an #rabs fensar £ using:

8
1 <1 5 .
Eif = vz [E{AI?+AI§ H}afi 57 -
B=1 -

The above expression can be referenced to Figure 4.9. Term V' sy

(4.17)

1} IJAY Lhe

aied CONEal

polygon described by the scalar line segments S? connecting houn

ch ine zogment iz

Lol aremenia Aa” and

defined by the coordinates of adjacent boundary discs § and #
AzP*1 respectively. Term e? refers to components of the unit vector as b

S8,

oyt g the Hoe

Invariants of the average strain tensor are calculated in the program uzing g expres-

sions:
En = €311 T €22

e =1/(e11 — £22)% + (€12 i

(4.18)

€u = €21 — €12

Here ¢, is the volumetric strain and e, the deviatoric strain wy zhear stean. Term

represents
rigid body rotation with a positive sign indicating counter-clockwise bualy retation. Principal strain

directions are calculated according to:

. €21t €12 " 21y
sin2f, = ———~, cos 20, -
€t ey

(1.19)

It should be noted that the term average strain tensor does not hnply that deformations mea-

sured at the sample boundaries reflect deformation ficlls ohuerverd b mterior locations. A continuous
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displacement profile is imposed on the boundary of the entire test assembly but discontinuities are
invariably observed within the assembly following peak shear. Clearly, a strain tensor description
such as € is an inadequate description of deformations which are vhavacterized by discontinuities. The
principal purpose of € in this investigation is to provide a famniliar deseription of the extent of total

sample deformation over the course of each test.

4.3.2.8 Boundary Control

Boundary control is implemented in Subroutine SEVMOT, Thies diflmrent houndary control
modes were used in the current investigation and may be sninarize! ag follows

Mode 1 (Constant Boundary Strain-rate Test)

Mode 1 applies velocity components z? to the centra of savh boumlary shee acoording Lo a

prescribed strain-rate tensor é?j. The velocities are calculated as fodlows

i =il =el(ah —a8) 4502 (4.20)

€

the centre

where %7 represents the disc location at the begiuning of the caleulation cyile and 27

coordinates of the assembly. Boundary control Mode 1 was wsedd jip this investigation to compact

selected samples by setting off-diagonal strain-rate tensor terma to sarv adid bopesing boundary diac
velocities corresponding to €3, = &3,.

Mode 2 (Constant oy Test)

»

Mode 2 models a biaxial compression or extension test in which ¢ Iniy dtvess component

¥ N 4 -
v oveinily B 1,‘9,1:]4,“,;*‘;)i,mdlng

o1y and the strain-rate component €5, are kept constant. The bonndary -

to the prescribed strain-rate component is calculated from expression (4707 The conatant atress
component oy; at the sample boundaries is maintained using s sfrain-contralle] Loandary which
functions in the manner of a servo-mechanism. At the end of each calonlation «yole the average stress
tensor g;; for the entire assembly is calculated from expreszion {4.16) {n the wext calenlation cycle,
11 is compared against the prescribed boundary stress companent o, and the boundary dise velooily

.Ef updated from:

b 8 ¢
or. — o)z — =
:1:? =2':bﬁ1- = g( ks Ub)( 1 J) 1 g 1 (4‘21)
a?.
E)

Here the term g represents the servo gain.
Mode 4 (Servo Strain-controlled Test)
Mode 4 allows a prescribed strain-rate tensor ci} to be apphed to the azsembly Boundary simal-

taneously with prescribed boundary stress U?j. Alternatively, iy retting preseribald strain-rate tensor

components to zero, the boundary is stress-controlled using only Lhe acrvo-mechanism.
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Figure 4.9  Boundary Disc Displacements for Calculatlion «f




The resultant boundary disc velocities are calculated as the sum of contributions from the strain-
rate boundary control and the servo-mechanism boundary control. The contribution of the prescribed
strain-rate tensor is calculated from expression (4.20). The contailution of the prescribed boundary
5 " B

stress tensor o5 ;

are then calculated from:

The Mode 4 boundary control option was used in this investigation Lo create s snipacted lsolropic
( Ko = 1) and anisotropic { K, # 1 ) assemblies under conditionz of gerw shear  In addition, this
boundary control mode was used to shear compacted samples nnder conditions of constant normal

stress.

4.3.2.9 Data Extraction

At prescribed numbers of cycles, information on the assembly i loaded to » data fils which is
used to trace the history of the test. Data extraction is done by Subraitine
Information contained in the file includes average stress and strain Lenzor foiipousnta, caordi-

nation number, contact density and assembly density for the entire zample. In addition, histogram

data is extracted for distributions ?:;(9): _)?:(9) and also for the average ¢ i verten Jength [ (4).

Parameters such as a, b, 0, 0y, an, at, 5 and 6, are also calenlated in wrder Lo pxainine sysleni con-
tact and force anisotropy. Similar information is included for selected cirenlar sub amrmbiion utated
within the interior of the assembly. The algorithms employed Lo calculate paramriers of asimolyopy
are based on the numerical techniques developed in Sections 3.2.3 and 4.4 3

The data file is constructed so that each record contains all of the abive infurmatian at puescribed
addresses in a one-dimensional binary array. Each record in the extract file then coniaing a complete
description of the assembly at a particular cycle count. The data file is confiyncsd 10 this pomner Lo
facilitate test interpretation. Separate plotting routines, written by the :ini,hm"; were waml Lo plot op
to ten dependent variables against any one independent variable by simply ilentifying the adede
of the parameters to be investigated and the number of times data was extracted fron the asvembly

during a test.

4.3.3 Comments on Program DISC

Several practical problems associated with the implementition of the DIEM in program DISC for

large assemblies should be noted.
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The current version of DISC executes on a Honeywell DPS/8 mainframe at about one calculation
cycle per second per 1000 discs and requires about 170K words internal memory. The amount of
internal core required increases with the number of discs and also with the range of disc diameters in
the assembly. In the current investigation most tests compnzed 1000 disc assemblies. To ensure that
these assemblies were always close to static equilibrium, rates of loading were kept to small values.
Typically, tests were run to 200,000 cycles in order to achieve boundary devintoric strainsg of 10 to

20 percent. Corresponding execution times for these 1000 disc tests were about 50 Lo 60 CPU hours!

Clearly the use of this type of simulation has to be restricted to situations (such as the anthors) where

computer resources are virtually unrestricted. It should be noted that the CPU time consumed is
largely due to those portions of the computer code devoted to keeping track of the location, forces
and moments acting on the assembly discs and tracing existing and potential contacts between discs
in proximity to one another. In addition, a great deal of computer time is spent on executing code
devoted to identifying boundary discs. A substantial portion of program development by the author
was concerned with development of algorithms which optimize the bookkeeping associated with keeping
track of the current status of all discs and contacts in the assembly during a test.

Numerous trial runs were undertaken by the writer to arrive at a combination of boundary control
parameters which resulted in satisfactory assembly behaviour- specifically minimum inertial effects.
Optimal rates of loading and magnitude of the servo-gain were established by trial and error such
that the prescribed boundary control mode did not result in a sluggish servo-mechanism nor generate

disturbances leading to excessive inertial effects.




CHAPTER 5

LTS

TEST PROGRAM AND i

5.1 Introduction

of dizcs

In this chapter the results of a test program carried oni on twonding

using program DISC are reported.

The principal purpose of the tests was to independently verify the thesretival relativnehips be-

tween average stress, contact density and coefficients of anisotrapy develujed in Chy

Program DISC allows the investigator to subject an assembly of of boundary

conditions resulting in stress-induced changes in the microstructirs and disiribution oof sontact forces,

The average stress acting on the assembly at any stage in a test can be cogupired to the fmicrentructare

and contact force anisotropies which develop to maintain the sample 11 #ratis eq s Additional

understanding of the micromechanical behaviour of two and three.din granitlar

systems is also possible from interpretation of the test results reparteil i this

5.2 Organization

A description of the test program is given in Section 5.3. Test res wed in Bection

5.4 which in turn is divided into the following subsections:

sibsfivs vider various

Section 5.4.1 describes typical macroscopic behaviour of initislly denss

loading paths. The purpose of this section is to show that the response of i e tes comtrolled

boundary disturbances is qualitatively similar to that which sy be «

carried out on physical samples.

Wistical mme-

Section 5.4.2 considers the micromechanical response of these s sk

chanics descriptions introduced in the earlier chapters. General relabimshijm hetsw cemband density,

coordination number, void ratio and average contact vector lenyth e ynwsstiyated, Dstehations fur

contact normals, contact force components and contact lenyihz are

xanted.

Section 5.4.3 examines the relationship between averaye nssenbly stress and paraneters deseribing
contact normal and contact force anisotropies. Fundamental equations which relate microstructure
hly are evaluated,

and contact force distributions to the measured average strems in an a
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Section 5.4.4 investigates the influence of the magnitude of disc interparticle stiffness and friction
coefficient on the global behaviour of these systems and the associated statistical descriptions of

microstructure and interparticle forces.

Section 5.4.5 examines relationships between second and fourth-order coeflicients of contact nor-
mal anisotropy and coordination number. Qualitative features of the evolution of microstructure

under different loading conditions are also identified.

Section 5.5 summarizes essential features of the micromechanical performance of assemblies of

discs based on the interpretation of test results given in preceding sections.

Finally, Section 5.6 proposes fundamental relationszhips for three-dimensional systems of cole-
sionless spherical or near-spherical particles which are analogons to the relationships established for

two-dimensional assemblies of discs.

5.3 Test Program

5.3.1 Disc Size-Distribution and Properties

With the exception of a single 500 disc test, the numerical experiments reported in this inves-
tigation consist of 1000 particle systems having 20 different disc radii. The number of discs in cach
interval was chosen to approximate a log-normal distribution as shown on Figure 5.1. A log-normal
size-distribution is considered typical for many well-graded granular media, 1t should be noted that
the range of disc radii was made as wide as possible without reducing computational eiliciency and
accuracy. The number of discs {i.e. 1000) was a compromise between a desire Lo have as large an
assembly as possible, to ensure a statistically representative system but, at the same time, ensure that
computation time was not excessive.

Normal and tangential contact stiffnesses were chosen such that k,/k, [ which is a convenient
value and represents a lower limit on the ratio of tangential to normal compliances for elastic spheres
in contact according to Mindlin (1949).

Contact stiffnesses were chosen for each test such that the gqnantity &, r assumed a constant value
for all disc sizes. Here, term r represents the disc radins. Appendix 13 describes the approach used
to estimate realistic magnitudes for contact stiffnesses for numerical experiments in this study. For
the majority of tests, a value of kn,r = 3.75 X 10*® was used. This value ensured that disc overlaps

were very small, with respect to disc radii, but of a magnitude which may be anticipated for relatively
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compressible photo-elastic materials. In fact, disc overlaps from these tests were similar to those
reported by Strack and Cundall (1978) for their verification tests involving numerical simulation of
photo-elastic disc assemblies. A limited number of tests were carried out with k,r = 3.75 x 10*! to
examine the influence of stiffer contacts on the global and micromechanical rezponse of disc assemblies.

In the current study, a number of tests were also undertaken to evaluate the influence of the
magnitude of the interparticle friction coefficient p on test results. Tests were carried out, on assemblies
comprising discs with friction coefficients of 0, 0.10, 0.25 and 0.5. This range of interparticle friction
coefficients is considered reasonable based on measured values reported for (dry) apheres manulactured
from glass or steel materials (Skinner, 1969) and discs constructed fromn photo-elastic malsrials (Oila

and Konishi, 1974a)
5.3.2 Assembly Generation

Disbursed assemblies of discs were initially generated using program AUTODISC. Denar isotropic
assemblies were then created by compacting these initially disbursed assemblies in bwo stages using
program DISC: First, the assembly was compressed hydrostatically (using modes 1 or 4} while Lem-
porarily assigning a friction coefficient of zero to all discs. Next, the assembly was allowed Lo come to
equilibrium under hydrostatic boundary stresses (e.g. mode 4 and €}; =0, o}, = o, o}, = ol = 0)
with the desired friction coefficient assigned to all discs. The compacted denze isetropic assembly
which was the starting configuration for a majority of the tests reported in this study 12 shown on
Figure 5.2. The initial void ratio of this assembly is e, = 0.16 and the initia] coordination nmmber
Yo 7~ 4.0,

Dense antsotropic assemblies were created in the same way with tlie exceptinn that during the
second compaction stage, mode 4 was applied with 012’2/0’1’1 > 0.

It should be noted that the starting configurations for numerical assemblien were lsotropic (or

‘anisotropic) with respect to second-order expressions for contact normals [(4], and contact force

components f,(8) and f;(8). Discussions in Section 5.4.5 show that the & term in £(2) (i.e. fourth-

order microstructure) was not directly controlled through application of a prescribed boundary stress
tensor.

Figure 5.3 shows the influence of sample size on assembly denzity, The aswmbly volumes on the
plots are described by a normalized radial distance r/7, from the centre of the selected circular region.
Here r is normalized with respect to the average disc radins r,,.

A number of important observations cau be made from Figure 5.3: Pirst, a large sample (say
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N > 500) is required in order to minimize fluctnations in measnured density. Comparisons between tests
comprising smaller samples may be compromized by fluctuations in (macroscale) physical properties
which obscure the relative performance of these samples under otherwise identical loading conditions.
The plots suggest that a 1000 disc sample affords protection sgamst signiicant fluctuatious in sample
properties and they also indicate that separate eubregiong of the assembly exhibit densities which
converge to a similar representative average value. While nut zhown, the same statement can be made

with respect to other physical properties such as coordinatim nwmber and contact density.
5.3.3 Summary of Test Parameters and Loading Pailis

Table 5.1 summarizes the.test program for mitislly devse vompacted assemblies of discs. The

table shows that the principal parameters which wers aq] bietween tezts were the loading path and
disc properties.
The loading/stress paths which resulted from specifisd Lowndary vontrol conditions are idealized

sponding to the origin

3 lovel corm

in the invariant stress space shown on Figure 5.4. The normial

of loading paths on the figure was set at 0, = ~2.0 x 10% The Loundary conditions which were used

e unloading

to generate the loading paths are shown on Figure 5.5, Vir 2elerted samples, one or mo

cycles were included in the loading program. The compression and sxtenzion loading paths which

be wxpecled for dreained triaxial

were applied to test assemblies are analogous to those whirh m

tests in conventional soil mechanics laboratory practice.

5.3.4 Program Stability

In Chapter 4 it was explained that the Distinct Flenient Method {DEM] nuperieal technique
models a transient problem in which static equilibrium is assumed whenevey tnertial furees or veloeilies
are negligible.

Boundary strain-rates and servo-gain for the varions bonncdacy conirol mades aml damiping co-

efficient values were selected (a.fter many trial ruxm) so Lhat atl any slaye o4 Lest the maximum disc
force F; was less than one percent of the maximum total contact forve. In addition, samples werce
deemed unstable if absolute translational ball velocitics were preater than |« 10 70 Similar criterin

were adopted by the original developers of the protutype program BALL, These crileria are neces-

the validity of theories which

sary in order to make valid comparisons between tests and o a
have been developed on the premise of statically wdmizsible forces within particulate systems. Tests
were discontinued when inertial effects became significant. Invariably this condition occurred at a
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1003
1005
1006
1007
1008
1009
1011
1013
1015
1017
1018
1022
1024
1025
1031

501

Test No.

Test No.

Load Path

=N = pwppy—ay—ammr—u—am»—a

Load Path

SUMMARY OF TEST PROGRAM
1000 DISC TESTS

m

0.50
0.50
0

0.25
0.25
0

0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.10

500 DISC TEST

m

0.50

TABLE 5.1

Disc Properties

kpr

3.75 x 100
3.75 x 100
3.75 x 101°
3.75 x 1010
3.75 x 100
3.75 x 1010
3.75 x 101!
3.75 x 10!
3.75 x 101
3.75 x 1010

Disc Properties

knr

3.75 x 1010

Remarks

disc size-distribution from
Figure 5.18

Remarks

including unload/reload syele
initial anisotropic asse
unload at large sirain
unload/reload

unload/reload




| Pure Shear

9t 2 Biaxial Compression
$ 3 Biaxial Extension
4 Hydrostatic Unloed /Reload
3 | /2
A
|
4 o e |O'n\

Figure 5.4 Loading Paths in Invariant Stress Space

2 011 = constant

= 099 = constant
€99 = constant(—ve)

=€91] = constant

a) Pure Shear b) Biaxial Compression

2
011 = constant o141 = 09 = constant
€99 = constant(+ve) =t

¢) Biaxial Extension d) Hydrostatic (Unload/Reload)

Figure 5.5 Applied Boundary Conditions
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limiting minimum sample density analogous to the critical state for granular media in soil mechanics
terminology.

While attempts were made to test initially loose assemblies of discs, these tests proved unsat-
isfactory. Loose isotropic samples were easily created by unloading any Jdense assembly once it had
achieved a dilated state. However, on reloading, these samples proved to be unstable according to

+ these loose assemblies

the criteria outlined above. This observed instability is not unexpect
were close to, or at, a metastable condition. Nevertheless, the principal purpose of this study was
well served by carrying out tests on dense assemblies. During shearing deformations, 3 wide range

erved as assemblies

of stress-induced changes in microstructure and contact force anisolropy was o

dilated from a dense to loose condition.

5.4 Test Results

5.4.1 Macroscopic Behaviour

The global stress-strain-void ratio behaviours measured at the bowndaries of selected tests are

amblica with disc

shown on Figures 5.6 and 5.7. Test results presented on these figures refer to

ondition

properties set to g = 0.5 and k,r = 3.75 x 1010, Each test was started Iyom s dense sotropi

and loaded along stress paths described in the previous section. While void ratio has besn introduced

in previous sections as a measure of microstructure, it is included hers in the description of macroscale
behaviour because it is often measured in the soil mechanics laboratory along with boundary stress
and strain quantities.

Qualitative features of the plots on Figures 5.6 and 5.7 are unt nuolike what may be expected

H : : R [ -3 o T
from dense three-dimensional granular systems based on convenliomal zoil nigchanics experience. The

following observations can be made from Figure 5.6:

s Jevels. A

1} Under monotonic loading, peak shear strength increases with incransing normal st
macroscopic Mohr-Coulomb friction coefficient of abont 0.4 can he caleulabed front the invariant
stress quantities measured at peak shear for tests shown on the figure. Similar calculations give

an apparent cohesion of zero for the total assembly.

2) At large strains, all three samples reached an ultimate state ([atlure) characterized by constant
shear strength and constant volume with further distortion. In convenlional soil niechanlics ter-

minology this condition is often called critical state.
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3) Samples with constant or increasing normal stress levels are seen to harden to peak shear strength
values and then soften to a reduced ultimate shear capacity. For the pure shear and biaxial
compression tests, the dilatancy rate £./é; falls to zero and the void ratio tends to a limiting
critical void ratio value e, as the ultimate state of the samples is approached. This phenomenon
is less clear with the biaxial extension test which was not able to sustain a gradual approach to

critical state before becoming numerically unstable.

4) All samples exhibited dilatancy rate and critical void ratio values which were suppressed with
increasing normal stress level.
Figure 5.7 shows the stress-strain-void ratio response of tests which included unloading to a
hydrostatic stress state at stages in the loading program. The plot shows that, while in a relatively
dense state (stages 1 and 2), the sample behaved in a linear elastic manner during the unload/reload

cycle.

5.4.2 Micromechanical Behaviour

5.4.2.1 General

An overall impression of the microstructure and distribution of interparticle forces which has
evolved at stages in the loading history of Test #1003 can be made from Figures 5.8 through 5.10. In
this test the average deviatoric invariant stress acting through the sample was increased monotonically
wlhile maintaining the (maximum) principal stress direction at an orientation of 0, = /4.

Figure 5.8a shows the spatial arrangement of disc contacts for the dense isotropic assembly at the
start of the test. Contact orientations are represented by the branch lengths connecting the centres
of discs which are in physical contact (i.e. contacts which transmit load). Dotted lines at the sample
perimeter connect the centres of discs defining the boundary of the assembly. The isotropic distribution
of contact forces on Figure 5.8b for the initial compacted assembly clearly reflects the hydrostatic stress
state under which it was created. In this plot, the orientation of each line corresponds to the line
of action of interparticle forces between discs and the thickness of each line is proportional to the
intensity of the contact force between particles. The contact force pairs act at the midpoint of each
line segment.

The dilatant response of this assembly during shear is apparent from the visually less-dense
distributions of contacts on Figures 5.9a and 5.10a. However, the distribution of contacts with respect
to orientation is not visually apparent from plots of this type but can be shown from contact frequency

distribution data presented in Section 5.4.2.3.
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In contrast, the redistribution of contact forces during shearing deformations is readily apparent
from Figures 5.9b and 5.10b. At peak and ultimate states the orientation and intensity of contact
force chains is clearly biased in the direction of the maximum principal sbress. Similar visual patterns
were observed for all tests in this investigation in which samples were subjected to increasing shearing
deformations.

Figure 5.10a and 5.10b show the test assembly at an ultimate state characterized by Hmiting
values of statistical quantities describing microstructure and contact force anisotropy. Typical of
all tests in the current study, further incremental shearing deformations led to numerical instability
(i.e. the assemblies became dynamic). However, under conditions of constant confining stress, it
was possible to sustain the ultimate (stable) condition over a small range of deviatoric sirain in
some tests. When this delicate balance was achieved, the growth and collapse of predominant load-
carrying chains could be observed while noting that statistical parameters describing microstructure
and contact forces remained unchanged. This condition corresponds to a steady state of sample
micromechanical behaviour under shearing deformations. Hypothetically, the steady state condition
could be preserved indefinetly by increasing assembly size and reducing the rate of deformations
associated with the boundary control mechanisms found in program DISC. In view of the comments
just made, it is convenient to denote parameters measured at the steady state condition by the
subscript co. Functionally, the term steady state corresponds to the familiar concept of critical state

in soil mechanics terminology. The concept of steady state will be developed more fully later in this

chapter.
5.4.2.2 Contact Density, Coordination Number and Void Ratio

The global response recorded from numerical tests on dense assemblies of discs was characterized
by increasing volumetric strains and an increase in void ratio up to steady state. Associated decreases
in microstructure were seen as reductions in coordination number and contact density. Steady state
values for coordination number, void ratio and contact density are denoted as Yoo, €co and m,  in
the following text.

Figure 5.11 shows the change in coordination number with deviatoric strain for the numerical
experiments described in previous sections. These samples showed an early aramatic reduction in the
number of contacts followed by a reduced rate of contact loss up to failure. At large strain, cach test
tended to a steady state coordination number vq,.

The early dramatic reduction in coordination number recorded for these tests can be misleading.
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It should be noted that a contact is recorded only if it transmits load. Elastic unloading of Many
contacts while the assembly is locked in a dense configuration is responsible for the rapid decreage in
coordination number. Hence, this early reduction in « does not reflect a significant spatial rearrange.
ment of the particles. If contacts were included which represented discs n close proximity then, a
shallower ¥ — e curve would be anticipated. However, the criterion thal a contact carry load in order
to be counted has been adopted in the current study because it is unambignons.

Figure 5.12 summarizes vy — ¢ data taken from Tests #1003, #1005 and #1018. This plot shows
that the initial reduction in coordination number does not correspond to a rapid reduction in deusity’
which is consistent with the comments made above. The range of coordination numbers corresponding
to a given void ratio e appears to be sensitive to the magnitude of the average normal contact force
acting at assembly contacts. For example, over the relatively shallow portion of the plot, the highest
values of 7 correspond to the biaxial compression test and the lower values to the biaxial extensioy
test. The biaxial extension test #1018 is considered to have failed prematurely due to Numerica)
instability; consequently, the tendency to a unique pressure independent value for v, over the full
range of normal stress shown on Figure 5.11 cannot be discounted on the basis of these three tests,
Pressure sensitivity of coordination number under hydrostatic loading is examined in Section 5.4.4.

The sensitivity of coordination number to normal stress level has important consequences o
three-dimensional systems. It is interesting to note that data reported in the literature (such as
Oda, 1977) does not include the effect of stress level or particle stiffness on the vy — e relationship for
granular media. In addition, it is doubtful whether experimental techniques used to identify tontactg
in physical tests (such as those reported by Oda, 1977 and others) are able to distinguish betweey
loaded contacts and points at which particles are close to touching.

In Section 2.8 it was shown that contact density may be expressed as a function of coordinat.ioll

number, void ratio and the average contact vector length for assemblies comprising spheres.

LFor
two-dimensional assemblies of discs the equivalent expression to (2.51) is:
my = — b (5
nklii(lk + €) >1)

A summary of data presented on Figure 5.13 shows that the measured data supports eqQuatioy
(5.1). While expression (5.1) is independent of interparticle friction angle, test results reporte in
Section 5.4.4 show that values for m,,_ , oo and e are sensitive to the magnitude of interparticlo

stiffness and interparticle friction.
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5.4.2.3 Distribution of Contact Normals and Fabric Tensor

The fabric or microstructure which evolves to maintain a granular assembly in static equilibrium
with the forces imposed at the system boundaries can also be characterized by the distribution of
contact normals.

Figure 5.14 shows the initial distribution of contact normals which was taken from the 1000
disc assembly used as the starting configuration for demse isotropic tests with k,r = 3.75 X 1040,
Superimposed on the figure is the fourth-order Fourier series approximation E(f) to this distribution
according to expression (3.19). Section 3.2.3 has shown that the coefficients of anisotropy a and b
contained in this expression are proportional to deviatoric invariant quantities of the fabric tensor R.
This relationship allows the coefficient terms and principal directions of contact anisotropy 6, and 8y
to be extracted directly from the measured contact normal data using expressions (3.17) and (3.18).

Figure 5.14 shows that the second-order distribution of contact normals is essentially isotropic (i.e.
a =~ 0) under the hydrostatic boundary stress conditions employed to create the assembly. In addition,
the initial test configuration recorded a very low value for fourth-order microstructure represented by
coefficient term b.

Figure 5.15 presents contact normal distrilutions recorded for Tests #1011 and #1015. These
tests included unloading to a hydrostatic stress stale at two stages in the loading program. The
plots show that concurrent with increasing deviatoric stress and dilatancy there was an increase in
contact anisotropy. However, at the end of each nnloading stage, there was a stress-induced return
to an essentially second-order isotropic distribution of contact normals. In addition, comparison of
approximating curves for initial and stage 4 contact frequencies shows an irrecoverable loss of contacts.

An important observation from Figures 5.14 and 5.15 is that the distribution function E{), in
the form (3.19), gives a reasonable visual approximation to the predeminant trends in measured data
at all stages. Nevertheless, isolated peaks are apparent on the contact distribution plots which cannot
be accounted for by a fourth-order Fourier series expression. These peaks may represent higher-
order microstructure and/or isolated chains of contacts which span the assembly diameter. For larger
samples, it is likely that a smoother distribution of measured contact normals wonld result. However,
from theoretical considerations {and as subsequent sections verify), only second-order microstructure
described by coefficient term a is important for the prediction of assembly shear strength.

Comparison of the distributions on Figures 5.15 suggests that contact anisotropy is generated
primarily by a reduction in the number of contact normals with oricutations close to the minor

principal stress direction. The relatively greater loss of contacts in the minor principal stress direction
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(as compared to the maximum principal direction f, = 7/4) can be seen on Figure 5.16. The curves
on the figure represent the number of contacts falling within 5 degrees of principal stress directions.
Similar phenomena have been reported in the literature from the results of physical tests on dense
planar systems of discs subject to increasing shear stress (Oda and Konishi, 1974a) and numerical

experiments on assemblies of discs reported by Cundall et al. (1982).
5.4.2,4 Distribution of Contact Lengths

Expressions (2.30) and (3.2) in Chapters 2 and 3 show that the relationship between average
stress and distributions for average contact force components and microstructure is simplified if the
distribution of contact lengths is independent of contact vector orientation (i.e. for two-dimensional
assemblies I (0) = 1,,).

Figure 5.17 shows polar histogram data for the distribution of average contact lengths at a post-
peak condition for a typical test comprising 1000 discs with the size-distribution given on Figure 5.1.
In fact, the data from all tests reveals that the distribution of average contact lengths with respect
to orientation was isotropic over the entire range of shearing deformations. Furthermore, Figure
5.19 illustrates that the average contact length for the 1000 disc tests remained constant at about the
average disc radius (i.e. 7, s I,). This result is not surprising considering the particle size-distribution
adopted for these tests.

A similar test using 500 discs with a gap-graded distribution of disc radii (Figure 5.18) was carried
out to confirm the independence of average contact lengths from orientation and to investigate the
hypothesis that a bimodal distribution of particle radii will bias the distribution of average contact
lengths in favour of larger particle sizes under deviatoric loading. Histogram data for this test revealed,
once again, that for the range of disc radii considered, the distribution of average contact lengths was
independent of the orientation of contact vectors but that the average contact length I, is biased
towards the larger disc sizes (Figure 5.19).

It may be concluded that for assemblies of discs (or spheres in three-dimensional systems) with
smooth unimodal size-distributions, the average contact length I, may be usefully approximated by

the average particle radius 7,.
5.4.2.5 Contact Force Distributions and Contact Force Tensors

Figure 5.20a and 5.20b show the distribution of normal and tangential (shear) contact force

components for the initial dense isotropic assembly which was used as the starting configuration for
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the majority of the 1000 disc tests in this study. The contact force distributions correspond to the
interparticle forces shown on Figure 5.8b. The distribution of contact forces is clearly isotropic. Fourier
series approximations to these distributions in the form {3.22) and (3.23) are also superimposed on
the figures.

Developments in Section 3.3.2 have shown that the coefficient terms in the approximating func-
tions ?;(0) and T:(&) are, in fact, invariant quantities of the contact force tensors Fpy and Fr.
Similarly, directions of contact force anisotropy f; and 0; are principal directions (eigenvectors) for
these same tensors.

Normal and tangential (shear) contact force distributions at stages during loading and unloading
of Tests #1011 and #1015 are shown on Figures 5.21 and 5.22. Expressions presented in Section 3.3.2
have been used to extract f2, coeflicients of coutact force anisotropy a,, at, @, and principal contact
force directions f; and 6 from the histogram data an the figures.

Perhaps the first observation which can be made from these plots is that the Fourier series
expressions of the form (3.22) and (3.23) appear to well vepregent the measured data. It may also be

noted that principal contact force directions for loaded atagea (1 and 3) were coincident and in the

approximate direction of the maximum load {or maxivum principal sleeas direction 8, = r/4).

During unloaded stages 2 and 4 the contact force distributions returued Lo a near-isotropic form
consistent with a return to a hydrostatic stress state.

The loading program for the tests presented on Figures 5.21 and Figure 5.22 corresponded to
a pure shear stress path. Hence the assembly was under constant norinal stress during loading and
unloading stages. Expression (3.44) predicts that under conditions of canstant normal stress, a reduced
contact density must be compensated by an increase in average nurmal contact force. Comparison of
approximating curves at stage 4 on Figure 5.21 supports this relationship,

In all tests the magnitude of the shear contact force coeflicient a,, wis sensibly zero and hence it
can be neglected in the equation (3.23) for the distribution of contact shear forces.

Distributions for average mobilized interparticle friction cocilicient jt, ,(0) are shown on Figure
5.23 at two stages in Tests #1011 and #1015. Measured distributions have been calculated directly

from:
ﬁmob(a) = l?:(g)/—f’u(”)l ’ (52)

Superimposed on the plots are the approximations to f,,,,,,(¢) using the theoretically derived relation
(3.28). For coaxial contact force tensors, expression {3.28) predicts that the mobilized contact friction

coefficient must be zero in the direction of contact force anisotropy. The measured data in the figure
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supports this hypothesis. Physically, this means that at orientations close to §, + nx/2, n =0,1,2,3,
the resultant interparticle forces comprise essentially normal components with little contribution from
the interparticle shear capacity at the contact.

The relatively low amplitude of these curves, even at the early stages of loading, shows that
Fmop(8) << p = 0.5. In fact, the (average) operative contact friction was always less than about
30 percent of interparticle shear capacity at all contact orientations. The absence of fully-mobilized
friction in sheared two-dimensional assemblies of discs has been remarked upon by Oda and Konishi
(1974a) from the results of their physical experiments (see Figure 1.12). A conspicuous absence of
oblique contact forces between discs iz also apparent from physical experiments by De Josselin De

Jong and Verruijt (1969) as shown on Figure 1.1a,

5.4.3 Average Stress and Anisotropy

5.4.3.1 General Observations

Relationships which equate average stress in planar amsemblies of discs to contact density and
invariant quantities describing the distribution of contact norimals and contact force components have
been proposed in Section 3.4.1.

The observations made in this subsection are restricted to assemblics with the disc properties
= 0.5 and k,r = 3.75 x 1010, These values were used for the majority of tests in the current study
and reflect properties which are considered reasonable for physzical Jizes constructed from photo-
elastic materials (Strack and Cundall, 1978). The influence of dizc properties on the global and
micromechanical response of numerical disc assemblies s examined in subsequent sections.

Figure 5.24a shows the measured invariant stress ratic a, = |o,/o,| recorded from Test #1003
together with coefficients of anisotropy a, a, and a;. Superimpose:l on the figure is the predicted curve
for a, using expression (3.47). The predicted curve appears to be a reasonable approximation to the
measured invariant stress ratio. From the same figure it i3 possible to trace the relative contributions
of assembly anisotropies to the shear capacity of the system.

At the very initial stage of sample loading, before particles had a chance to unlock, rapid increases
in all three anisotropies were recorded as the sample behaved in a linear elastic manner. However,
only a small further reduction in contact density was required before the magnitude of tangential
(shear) contact force anisotropy a; dropped substantially and remained low for the remainder of the
test. In contrast, normal contact force anisotropy a, and contact normal anisotropy a peaked later

at about the maximum shear capacity recorded for the system. With further distortion, both terms
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diminished in value leading to macroscopic softening of the assembly. The reduction of normal contact

force anisotropy a, was particularly pronounced (ollowing peak shear.

Comparison of Figures 5.24a and 5.24b shows that the post-peak reduction of coeflicient terms
a and a, occurred close to, or at about, the steady state coordination vumber for the test {i.e.
Yoo = 3.40). However, ultimate failure did not occur until coovdination number, void ratio and

coefficients of anisotropy had achieved steady state values (Figures 5. 24a through 5.24¢).

Figure 5.24d shows some minor fluctuations from coaxiality of stress, contact force and contact
g ¥ )
tensors. While insignificant, these fluctuations illustrate lisw contact distributions and tangential

contact force distributions compensate each other to maintain the mbly of discs In moment equi-

librium. For example, when the direction of contact anisotropy flucinates to #, < f,, the contact
forces compensate in the opposite direction (i.e. #; > #,) ts eiaure that the moment equilibrium

criterion described by equation (3.25) is preserved. The relative arientations of contact and tangential

contact force tensors with respect to the (major) principal ai on are idenlized on Figure 3.7,
However, it should be noted that fluctuations from coincidence of contact normal and contact force

tensors are not great enough to invalidate the fundamental relstionehip described by equation (3.47)

The results of Tests #1011 and #1015 are presented on Figure § At all stages, expression

(3.47) gave a good approximation to the directly measnred invariant st ratio.  An important

observation from these unload/reload tests is that microstructurs anizotrapy measnred by parameter
a is stress-induced. Unloading to a hydrostatic stress state renults vy a return Lo an essentially second-
order isotropic distribution of contact normals. During unloading, these numerical systems of discs
have no memory from previous anisotropic microstructure. This bihaviour is considered to be a

feature of particulate assemblies comprising d7scs. Similar

vatsted put with non-circular particles
{such as elliptical-shaped particles) may be expected to exhibit microstructural memory which is

stress-path dependent.

Figure 5.26 shows the results of a biaxial compression test stasied from an initially dense isotropic
condition. Predicted principal stress ratios and invariant stress ralios 0gq /ey and a, from expressions
(3.49) and (3.47) compare favorably to the measured data. Cuouxiality of principal directions 84, 8y,
8¢ and 8, was also observed in this test. Unlike the pure shear tests, a dramatic reduction in contact
anisotropy was not observed for the biaxial compression test {ollowing f)cuk shear. The sustained
contact anisotropy is thought to be due to the gemerally higher coordination number (or contact

density) which was observed for this system at a post-peak shear condition. A similar sustained

level of contact anisotropy can be observed from data reported by Biarez and Wiendieck (1963) for
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two-dimensional biaxial compression tests (refer to Figure 1.5).

which was started from an initially dense

Figure 5.27 shows the results of a pure shear i

antsotropic condition (K, = L5} in order to wmvestigate the azswmption of coaxiality of assembly
tensors. The plots in this figure show that, even Jor it ially anjsolropie aszemllios, expression (3.47) 1s

cation which ean be made from

valid and principal directions are coincident, Anothier inferest

2 g erzeniially stantanceous

this test is that the reorientation of microstructure desivilied by v
under rotation of principal stress directions. The rapid seorviestation of s vesiradtnre Jdue to changes

in principal stress directions for this two-dimengional numieiical experiment las ol hesn nhserved

in two-dimensional physical tests {see Figure 3,10} and in th Dibiee ol sand {see

Figure 2.7).

on

The results of the numerical experiments 1n the current study s hrpeariant concl

that the shear capacity of these systems, at all loadiny tos cnntact and normal

contact force anisotropies a and a,, which are generated in the rmoajor pri dirnction. Phys

3

ically, this means that assembly microstructure evolves so that the saps steim s due Lo

contact orientations and interparticle forces which attempt 1o align thewmsaly

e fsteipagfcle shear,

maximum load. Relatively little direct system capacity is generatad shi

“al exe

b 1,;,7{

Oda and Konishi (1974a) have come to essentially the mamie coneluaion

periments but were not able to quantify the contributions of contact forre caompanrnts o the shear

capacity of their assemblies. Interestingly, the maximum values for i snd a4, asiod foom ther data

Pexperinenls,

in Sections 3.2.3 and 3.3.3 are reasonably close to those recordad for the numisii

5.4.3.2 Accuracy of Theoretical Expressions for Average Stress Quuntitien

i, Maing eilion {3 17) OvVer-

Tigure 5.24a, for example, shows that the theoretical expensi

estimates the measured values by several percent. IHowcver, w vy does nob appear

sumption(s)

unacceptable, it is important to trace the source of the ervar w arsdey o lacate which ¢
leading to theoretically developed expressions, such as (3.47), is vesponsilile. In adidition, it is desirable

to identify the error in the predicted values of oy and o,, to cosure that the close agreeinent between

predicted and measured values of a, is not due to a fortuitous over-ezizmation of o and oy, terms.
Figures 5.28 and 5.29 present simple error analyses of Jata fiom typical tests. On Figure 5.28a

the percent error between values from theoretically derived expreazions (3.44), (3.45) and (3.47) and

directly measured data is shown. Directly measured values follow [rom expressions (4.16) and invariant

stress quantities (3.40) and (3.41) associated with the Mobr circle of stress. The figure shows that
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the percent error in a, is largely due to an over-estimation of the deviatoric stress component 0.

Nevertheless, the predicted value for o, is within 10 percent of the measured value.

Figure 5.28b shows predicted values for the same invariant stress quantities calculated directly

3 in4

from 36 interval histogram data for S, (#), f;(6), ['(§) and M,(8) over the range 0 < 0§ < 2m.
Term Mg (0) represents the number of contacts falling within the class boundaries with mid-interval
orientation f,;. Invariant stress values were calculated using the following approach: Average stress

quantities g;; can be approximated from listogram data according to:

Gty Z {rinCm,o} <,5=1,2 (5.3)
0,
Expression (5.3) can be recognized as the two-dimensional analogue to relationship (2.24). Letting

fi¢ = (cos §,sin ) and £° = (—sin b, cos§) be pormal and Langential contact vector components corre-

sponding to histogram intervals, then:

oij = % So{Tnons & 10T (1 M, (0)) (5.4)

The percent error from measured values wsing th

expressions s relatively small. The largest

errors occur for the initial isotropic assembly but niay be migleading aince the magnitude of oy for the
assembly at this stage is very small (e.g. two orders of magnitnde lower than o,).

The results of a similar error analysis are presentsd on Figure 5,29 {or a biaxial compression test
(#1005). Figure 5.29a shows that the error Letween theory and measured values for the stress ratio
O22/011 is due to oa5 but the discrepancy is atill within 10 percent. Again, approximations using
histogram data and relation (5.4) give cssentially the dirsctly measured values (Figure 5.29b).

Similar error analyses were cartied ont for all nuwmerical experiments in the current investigation.
Irrespective of test details, including the magnitude of disc parameters p and k,r, the maximum
error between stress quantities calculated from parameters of anisotropy and directly measured stress
quantities was never greater than 10 percent.

The accuracy with which theoretical expressions can be expected to predict assembly stress
quantities is related to sample size and homogeneity. It was observed during the trial runs of program
DISC that near-circular assemblies of less than about 500 discs resulted in continuous branch length
chains which extended across the sample dinmeter. The corresponding histogram for contact normals
when this occurred showed isolated peaks which could not be reproduced by a fourth-order Fourier
series distribution function. Similar peaks are apparent from the physical test data taken from Konishi

(1978) and reproduced on Figures 3.2 through 3.4 for assemblies of 400 discs. However, for the 1000
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disc tests in the current investigation, unbroken chains of contacts propagating through the sample
were less frequent. In these tests the chains tended to form and dissipate within the sample resulting in
a larger number of dispersed chains and a smoother distribution of contact normals. While the larger
assemblies comprising 1000 discs improved the accuracy of the Fourier series distribution function,
occasional predominant chains of contacts are responsible for the discontinuous appearance of the
contact normal histogram data reported in Section 5.4.2.3. Ignoring for the moment the prohibitive
amount of computer time required to carry outl tests on even larger assemblies, it is considered that
second-order Fourier series expressions would produce more accurate approximations to contact normal
distributions for larger sample sizes.

In summary, the results of the error analyses show that stress quantities can be calculated directly

from position-independent average quantitics /,, (4, f,(8), I'(¢) and M,(9) according to (5.4). This is
an important statement because relationship (5.4) is # two-dimensional analogue to expression (2.24)
which is a fundamental postulate for three-dimensional aystems.

In addition, the results of numerical experinents regmrted in this section show that the principal

stress ratio, invariant stress ratio, normal stress and dev s acting through the assembly can

be usefully approximated by expressions presented in Section 3.4.1 which contaiu invariant quantities

of second-order contact and contact force tensors. Since atress

quantities o7y expressed as (3.53) retain

their form in three dimensions, it may be inferred that similar fundamental expressions for invariant

stress ratio, principal stress ratio etc. are equally valid for threesdimensional granular media.

5.4.4 Influence of Disc Properties

5.4.4.1 Contact Stiffnesses

The test results presented at this stage have been largely restricted to experimental results from
assemblies of discs with linear elastic contacts having Lhe constant product term k,r = 3.75 x 1010,
From Appendix B, it is reasonable to expect that photo-elastic materials exhibit normal compliances
which may be one order of magnitude greater than similar particles comprising stiffer elastic materials
such as steel or quartz.

Three tests were carried out to examine the influence of the magnitude of contact stiffness on the
global and micromechanical response of assemblies of discs. The experiments performed were 1dentical
to tests already described with the exception that k,r = 3.75 x 10!, Unfortunetly, assemblies with
higher stifinesses impose a time-step penalty which can be appreciated from equation (4.15). This

relation shows that to achieve the same amount of deformation as recorded in previous tests, program
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DISC had to run /10 times longer for assemblies with high contact stifinesses. Consequently, fewer of
these tests were performed even though they may be considered more representative of actual granular

materials.

Figure 5.30 shows the normal stress-volumetric strain response for two hydrostatic unload/reload
tests. As may be anticipated, the system with the lower contact stiffnesses showed a lower bulk

modulus B where B = Ag,,/Ac,.

Figure 5.31 illustrates the sensitivity of coordination number to average contact force level. Specif-
ically, the figure shows that there is an essentially linear relationship between coordination number v
and average normal contact force f2 during hiydrostatic tests. The sensitivity of coordination num-
ber to contact force level is more pronounced for sytems with low stiffness contacts. The source of
the performance difference between these two tests can be identified from frequency distributions for
contact normal forces as shown on Figures 5.32a and 5.32b. The frequency data on the figures has
been taken over 40 intervals. These figures show that during hydrostatic unloading, the frequency
distributions shift to the left corresponding to lower average contact normal force f2. However, the
increase in contacts with low interparticle forces is less for the low stiffness assembly and this system
experiences a greater net loss in contacts. If the assemblies under study were to comprise bonded discs
{i.e. contacts which could take tension) then, one would expect a significant number of contacts to
change from transmitting compressive forces to transmitting tensile forces under hydrostatic unload-
ing. However, because the assemblies investigated are cohesionless, these contacts are lost. This loss
does not represent a significant rearrangement in structure, but is a consequence of the unambiguous

requirement that a contact must carry load before it is recorded in these numerical experiments.

The observations made above with respect to the frequency distribution of contact forces for
cohesionless systems have interesting ramifications for bonded assemblies. The implication from these
tests is that significant numbers of tensile contact forces are possible in bonded granular assemblies

even when these systems are loaded under (compressive) hydrostatic conditions.
Differences in the behaviour of pure shear tests with dissimilar contact stiffnesses are shown on

Figure 5.33. Test #1024 shows an initially greater global elastic stiffness and an overall higher shear

capacity as compared to Test #1003. In addition, larger volumetric strains were sustained for the

stiffer sample before becoming unstable (Figure 5.35b). Associated micromechanical hehaviour for

the stiffer assembly can be seen from Figures 5.34a and 5.34b. Cousistent with the generally higher
Invariant stress ratio values a, recorded for Test #1024, there were higher values for coeflicients of

anisotropy a, and a (compare Figure 5.34a with Figure 5.244). On the other hand, a, was not observed
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to vary significantly between tests with dillerent contact stiffnesses.

Figure 5.35 and 5.36 show the results of T

/#1025 which is a biaxial compression test conducted

with k,r = 3.75 x 10'!. Figure 5.35 compares the globul stress-strain response of Tests #1025 and

#1005. The stiffer sample shows an iuitially vteeper g, - £; curve and relatively little initial elastic

volumetric compression. The peak and p

prak shear capacities recorded for these tests are similar

and show comparable coefficients of anizatiopy o, u, and g, (compare Figures 5.36a and 5.26b).

However, like the pure shear tests, azsembly

a# m Test #£1025 are generated at significantly

lower coordination numbers as shown on Fipure 4

5.4.4.2 Interparticle Friction Coeflicient

The stress-strain-void ratio vesponse of pure she # with interparticle friction coefficient p

set to of 0, 0.10, 0.25 and 0.50 is shown an the yi

7. Tests with zero friction values

represent a hypothetical condition which is nt 3

ihle for seal aystama, However, valuable lessons

are gained from examination of test resulis rartiel

ant wader the fmiting condition represented by

frictionless particles.

The following observations can be madne: The

dilatancy rate &, /¢, and

witly o O, there is

“atrain. Nevertheless,

sriall amannl of shear

o the shear capacity

recorded for p = O assemblies is due to the artificial dasnpimy ini

part of the 1)

4 numerical

scheme to dissipate kinetic energy. This contriliuticu {shigdsd

}ocan o Bhensd Lo the amall

additional stability afforded granular particles by intmersing the nsssmbly in s viavess medium.

The micromechanical response of tests shown on Figore presented on B

steady state coordination number for these assenmiblies iz greatly nfluenved by Diterpaiicle Triction,

In general, increasing p results in lower coordination numbers [Figure

Somlarly, reduced p

values correspond to lower coefficients of anisotropy a, i, and oy Az especied, sasembslies with g~ 0

exhibit no tangential (shear) contact force anisotropy. Siniilar ohservations can be made from the data

presented on Figures 5.39 and 5.40 taken from the reaults of Biaxial compression testa with variable

friction coeflicients.

The observations made above give importaut insight intis the contribution of inter particle friction

to the shear capacity of these systems observed at the macroseale, The direct contribution of tangen-
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tial contact force anisotropy described by the coeflicient a, 1s observed to be small when compared to
a, and a. However, interparticle Iriction dictates Lhe extent to which the microstructure can dilate
and anisotropies a, and a evolve, In general, aszemblies with lower coordination numbers are more
mobile and have the potential for greater amsotropy as Jdescribed by parameters a,, and a. However,
in order to generate stable configurations at reiduced coordination numbers it is necessary that as-
semblies of discs be capable of transmitting tiangrniial coutact forces. As the test data show, without

azzemblies to dilate under deviatoric strain because

interparticle friction, it is not possible for the
only the initial (dense) packing arrangement with v = 4 2 stable. The test results suggest that only a
modest frictional capacity is required during samuple -Hstorlion Lo allow the microstructure to develop
the oblique interparticle forces which are regnired 1o maintain the assembly in static equilibrium at
coordination numbers less than four.

Skinner (1969) reported that for shear box 1

5 with Lalloting having variable interparticle friction
angle, the measured macroscopic assembly friction angles at prak shear and at critical void ratio do
not increase monotonically with increasing magnitude of intarparticle friction. It is interesting to
compare Skinner’s observations with the results of nusnerical tests in the current study. Assuming that
numerical assemblies at the macroscale obey a Coulomb frictivn law then, the macroscopic assembly

friction angle ¢ at any stage can be calculated from:

sin g = |oy/er,] (5.

ot
o
~—

The results of calculations for ¢raz and @ey (0 das) ave plotiemd against 4, on Figure 541, Figure
5.41 shows that the curve for pure shear tests at the nitimate state gives the zame frend as reported
by Skinner for three-dimensional assemblies of sphercal pariizles {see Figure L6c). Like Skinner’s
results, the numerical pure shear tests showed ¢., (or ¢..} to be independent of interparticle friction
angle for ¢, > 5 degrees, For all other data on TFigure 5.41, there s a Jistingt non-linear appearance
to the curves. Indeed, for all curves there is a threshold value of ¢, bevond which macroscopic shear
capacity is essentially independent of interparticle friction angle. This threshold value varies from 5
to (say) 25 degrees depending on the loading path and whether the system under consideration is at

peak or ultimate condition. This range of values is well within directly measured values of ¢, for

actual granular media.
5.4.5 Coefficients of Contact Anisotropy and Coordination Number

Examination of parameters a, b and coordination number « gives some qualitative understanding

of how the microstructure of assemblies comprising discs evolves during shear.
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In general, the invariant quantity a, which is related to the second-order deviator fabric tensor
R, was observed to increase in magnitude with decreasing coordination number. Typical test results
in support of this statement are shown on Fignre 5.42. The plota on this figure show that a limiting
maximum value of a is achieved only after the assenbly reaches a munimum or ultimate coordination
number equal in magnitude to the steady state value. Microstructure collapse manifest as a reduction
in a was observed in pure shear tests with g # 0 and soft contacts (k,r = 3.75 x 10'") once these
assemblies had achieved a coordination number 4o, ®¢ 3.4. All other tests in the current investigation
did not exhibit significant structural collapse (i.e. reduced a values) at large strains. For example, high
contact stiffness assemblies corresponding to Tests #1024 and #1025 (Figures 5.42c and 5.42d), did
not exhibit significant reductions in a even after achieving lower steady state coordination numbers
(Yoo = 3.12). Biarez and Wiendieck (1963) report the results of physical two-dimensional biaxial
tests taken to large strains (see Section 1.6.1). Similar qualitative observations were made by these
researchers concerning the evolution of contact anisotropy {parameter A) with increasing sample
distortion. For these tests they noted that peak contact anisotropy was sustained at large strains and

that the intensity of contact anisotropy increased with increasing void ratio.

Based on limited data for high stiffness assemblies, it is possible to identify the area falling below
the @ — 9 curves as a region containing admissible combinations of ¢, v quantities. Assemblies with
microstructure described by a, 4 values falling below the @ — « curves on the plots are attainable by
unloading assemblies with coordination numbers 7o < ¥ < Ymaz =~ 4.0. However, because of the
sensitivity of microstructure parameters to contact force levels, the upper boundary on this region
may vary between tests subjected to other stress paths. Further testing of high stiffness assemblies
is required to determine if a unique state geometry defined by admissible combinations of a, v does

indeed exist for numerical systems with stiffnesses comparable to actual granular media.

The relationship between a and 7, is easy to understand from the results of the current study.
The overall minimum intensity of particle packing, which is described in part by «, offers the most
mobile yet stable condition in which contacts can arrange themselves in preferred directions. However,
the magnitude of the steady state coordination number for a given test 1g dependent largely on the
magnitude of disc properties assigned to the assembly discs. Daia presented in the previous section
shows that, in general, the steady state coordination nmuber decrrases with increasing interparticle

friction coefficient and increasing contact stiflness.

On Figure 5.42 the fourth-order structure deseribed by the coellicient of contact anisotropy b is

also plotted. These figures show that the magnitude of b i3 generally less than a. In addition, the
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increase in b is not as progressive as that recorded for a. In most tests a rapid increase in b was
observed only after the assembly was at or about the value of the steady state coordination number.
Similar qualitative performances can be observed from the results of a laboratory two-dimensional

simple shear test reported by Konishi (1978) using a dense assembly of discs (Figure 3.10a).

It is interesting to note that second-order isotropic assemblies of discs (i.e. a = 0) were easily

created by setting applied boundary stresses to 0%, = o5, and 0¥, = 05, = 0. In other words, a second-
order isotropic distribution of coutact normals was directly controlled by the second-order isotropic
average stress condition iinposed on the mwmples to create the initial compacted assemblies. The rela-
tionship between the fourth-order term b {which is related to the fourth-order deviator fabric tensor)
and the second-order stress teusor is more aubtle. Initial b values for compacted isotropic assemblies
were greater than zero indicating that some bigher-order structure was created for these assemblies
despite the isotropic distribution of tractions applied at the sample boundaries. Examination of sec-
ond and fourth-order directions of contact anizatvopy #, and 0;, from selected tests gives some insight
into the relationship between second and fourth-irder microgtructure for these numerical experiments
{refer to Figure 5.43). The plots show that for the initial compacted assemblies §, = 7/4, 37/4 over
the interval 0 < § < «. This fourth-order direction of anisotropy is at £7/4 to the principal stress
directions (directions 1 and 2) which in turn are coaxial with the two directions along which the
servo-mechanism acts in program DISC to create an isotropic stress condition in the sample. The
initial fourth-order orientation of contact normals was preserved in biaxial compression and extension
tests (Figure 5.43b). As a result, there was no destruction of this higher-order microstructure as the
samples were loaded as shown by the test data presenied on Figures 5.42h and 5.42d. In contrast,
the fourth-order contact structure in assemblies subjected to pure shear loading paths evolved in a
different manner. Before the fourth-order microstructure in these tests conld develop significantly, it
was necessary for this structure to rotate through m/4 and in the process be completely destroyed.
However, after rotation, there was a dramatic increase in & ones the limiting coordination number for

the assembly was reached.

The two histories described above are idealized om Figure 5.44. The initial contact normal ar-
rangement is shown on Figure 5.44a. The microstructnre at the ultimate state for biaxial compression

and pure shear tests is shown on Figures 5.44b and 5.44c¢ respectively.

1t appears from these tests that second and fourth-order contact normal arrangements are related.
The ultimate contact arrangement which an assembly of discs attempts to achieve under monotonic

loading with constant principal stress direction is characterized by second-order and fourth-order
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directions of anisotropy related by |f, ~ #,| == x/4. Similar observations can be made from physical

tests on dense assemblies of di

s reported Oda and Konishi (refer to Figure 3.10c).
An additional observation from Figure 5.43a can be made concerning the transition of the assem-
bly from a locked to relatively inebile condition. The curve for 8 on this figure shows a distinct break

at about &; = 0.015 which can be interpreted as the deviatoric strain at which the assembly packing

is sufficiently loose to allow fouril-o

der vontact normal rearrangement.
The rather detailed examination of fourth-order microstructure may be of academic interest con-
sidering that theoretical developments presented in Chapter 3 show that its contribution to shear

capacity is likely small. While the developrimnt of lourth-order structure defined by coefficient b is

pronounced in the numerical ex

Eiinen

# ab large atrain, the presence of this microstructural com-

ponent is considered a unigus feature

of twosdinenzsional systems. While it cannot be verified in the

current investigation, it is likely that the greater geometric freedom available to three-dimensional
granular media will minimize the development of fourth-order (or greater) anisotropic microstructure

for these systems.

5.5 Essential Features of the Micromechsnieal Debiaviour of Two-Dimensional
Assemblies of Discs

5.5.1 General

The results of numerical simulations using tww-dinensional as

einbilies of discs have shown that

fundamental relationships proposed in Chajt

and 3 relating average slress to statistical descrip-

tions of fabric and contact forces are valid for ile

pifsg 1y

In addition, the experimental results provide a cabal

seepeations wlhich together give a

qualitative understanding of the influence of particle yisportic

stracturs awd howndary loading

conditions on the macroscopic behaviour of these idealiznd wysiems, The following

Lions BUIIMarize

these observations in a manner which may be uselul €t those vesescshors propoanng » ooahinlive models

for granular systems which adopt the statistical mechapivs famework samployesd 1 the corrent study.
5.5.2 Steady State and Processes of Order and Dinorder

Any attempt to synthesize observed micromechanival Lehaviour of granular mnedin emmphasizes
the complex mechanical nature of these materials. Their comnplex behaviour 1z due, 1 part, to the
observation that they exhibit propertiea of hoth solids and fds. For example, under hydrostatic
compression, a dense sand will behave as a solid. Under Large shearing strains the same system will

flow similar to a fluid.
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In many respects, the microscopic processes occurring in granular materials during shear are anal-
ogous to mechanisms accompanying melting of solids. Although mechanisms of thermally-activated
melting are somewhat different from shear-activated flow, both lead to increased mobility of particles

in the respective systems.

During melting of solids, particles [molecules) receive sufficient kinetic energy to increase the
volume of the system and to reduce geometrical constraints to the point that the systemn becomes
mobile and can flow. In granular systems, subject to shearing deformations, reduction of geometri-
cal constraints is associated with loss of interparticle contacts during dilation. Flow occurs under
sufficiently advanced shearing dsformations,

Unlike molecular systems, granular materials never reach a fluid phase under low deviatoric

strain rates. Their state is to some extent comparable to a state of liquid-solid phase transition when

both phases coexist. At this point, the malscular motions for these systems are just sufficient to
initiate melting but, the material ia atill abids 1o ansbain shearing at a reduced capacity from the solid

phase. The liquid-solid phase trinaition state |

lar syatems is thermodynamically unstable and

virtually impossible to observe in laboratory, Consequently, ihia state of matter has not been explored

in physical experiments on molecular systems and vhers have resorted to numerical simulations

of molecular systems represented by assemblies of disga wr epheres. In fact, the entire problem of
liquid-solid phase transition is considered to be ome of the mest ciallenging in contemporary physics.

assemblies, on the other hand, can be maintained in the analogous state due Lo dissipation
Granular assemblies, on the other hand, b 1 (ST Y I tate due Lo dissipatic

of energy during shearing deformations.

The above mentioned analogies between the behaviour of molecular avstems in the area of solid-

phase transition and granular material during shearing deformations leads waturally to the concept
of steady state of deformations. In very general termms, siciudy state scoors when the limit of material
anisotropy is achieved under shearing deformations and g further changes in microstructure are

evident at the macroscale. Functionally, the term steady state corres

neds 1o the familine concepl of

critical state in soil mechanics terminology; the former is preferred however, shice it suggests a clearer

tem achieves an ultimate

notion of the internal processes which are occurring when a granulai

condition under shearing deformations.

The results of numerical simulations suggest that there are two competing processes at work
during transition to steady state. The first process is a tendency Lo desorder which is manifest as local
dilation at the microscale (micro-softening) and volumetric expansion at the macroscale. The degree

of disorder can be observed as a reduction in coordination number 7 and a corresponding increase
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in void ratio e. A fundamental parameter which quantifies the average state of packing is contact
density m,, which for idealized sysiems comprising a unimodal size-distribution of spheres or discs, is
a function of , e and average particle radius ¥,,. Superimposed on this process is a tendency to order
{creation of anisotropic structure) which is manifest as the development of chatns of contacts, carrying
higher than average contact forces, whicl align themselves with the principal direction of loading. The
formation of chains can be viewed as local densification or contraction in preferred directions. In soil
mechanics, this localized contraction is referred Lo as interlocking or micro-hardening. For the planar
systems under study, the stress-induced Lendency 1o anizolropic structure has been quantified using

a fabric tensor R and deviatoric invariant quantities associated with this tensor.

A fundamental premise is that these competing stabilizing and destabilizing processes are always
present during deformations but the rates at which they wccur varies. In the numerical experiments re-

ported in this study, the stabilizing and de

Lilizing procesmes cam be observed as erratic fluctuations

in parameters describing microstructure (e.g. 1, 7 and ¢). For analogons three-dimensional assemblies
of granular media consisting of a very large number of particles, stabilizing/destabilizing processes
occur but fluctuations in parameters of interest are wbscured awl their cnrves appear smooth. Steady
state represents the limiting condition when both stabilizing and destabilising processes are in equi-
librium. At steady state, the rate at which local contractions are vrcwrring through the growth of new
chains is just equal to the rate at which existing chaing are igintegratad by the destabilizing eflect of
local dilation. At the macroscale, steady state is manilest as a no net shange in volume and also no

change in statistical quantities describing fabric (such az =y, ¢ and « ).

The growth-decay cycle of predominant chaing can bie appreciated by the analogy of these micro-
features as load-bearing columns. The capacity of each colunin of particles is dictated by the degree
of lateral support offered by contacting particles not foriming the cliain, Local dilation reduces this
support and, if continued, leads to collapse of the chain. The analogy of microstructure as containing
load-bearing columns can be extended to include the influence of Jdige properties on the capacity of
load-carrying chains. Similar to columns, increasing the stillness of interparticle contacts improves the
capacity of the load-bearing chains; increasing interparticle tangential forers is analogous to increasing

lateral support to these microfeatures.

The numerical simulations showed that, during shearing deformations, the predominant microme-
chanical response up to steady state was dilatancy characierized by a direction-independent loss of
contacts. Superimposed on this process were contractions in the direction of maximum load and gen-

eration of load-bearing chains of discs. Together, these two processes resulted in the generation of
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contact anisotropy primarily through net contact loss in directions orthogonal to the applied load.
At the early stages during nmmnerical stimulations, the ability to generate anisotropy (as measured
by coefficient a) was suppressed until the samples became unlocked. The greatest anisotropy was
recorded after the assemblies had achieved a threshold contact density which afforded these systems
sufficient mobility to develop anizolropy in contact distribution yet, adequate density to support

load-bearing chains.
5.5.3 Fabric Tensor

Statistical quantities describing faliric can be associated with each of the stabilizing and destabi-
lizing processes identified above, The serond-order fabric tensor R carries all essential information on
the geometrical arrangement of assemblics comprising discs. Qualitative insight is gained by describing

this fabric tensor as the sum of spherical and deviator tensor parts (R* and R'). Hence:
Rij=R; 4, 51,2 (5.8)

The destabilizing processes which are associnted with assembly dilatancy are measured by the spherical

tensor:

R} = my by (5.7)

Processes which result in the generation of anisotropic strigture i rezponsi Lo shearing deformations

can be measured by the deviator fabric tensor:
RI R N
iy = iy 7 T Oy

or the reduced deviator fabric tensor:

7
=t 15

R, B
17 Rkk/2 7

The fabric tensor and its decomposition to spherical anid deviator parts represents more than

a quantitative measure of microstructure. Both are physical quantities which enter directly into
expressions which predict the hydrostatic resistance oflcred by these assemblies and the assembly

shear capacity (i.e. equations (3.44) and (3.47)).




5.5.4 Contact Forces and Fabric

It is clear that the ability of anisofropic structure Lo sustain load is due to the distribution of
contact forces which evolves directly as a vesalt of loads impozed at the system boundaries. Correct
interpretation of micromechanical bebavionr must recognize the interrelation between distribution
of forces and the evolution of microstructure which develops as « reswlt of forces. Perhaps the
fundamental shortcoming of theortes which have attempted 1o relate fabric to assembly stress has
been to neglect the contribution of interparticle forces. The intimate relation between anisotropy in
contact forces and fabric has been obvious from the results of current study. Distributionz of both
quantities are visually similar (e.g. they are peanut-shaped under deviatoric load) and can be deseribed
by second-order temsors with coaxial orientations.

Similarities in tensorial quantities can be anticipated if simpler systems comprising bonded discs
are examined: For example, consider first an unloaded two-dimensional continuum bounded by a
surface S as shown on Figure 5.45. Imagine that the body is subject to a smooth displacement field
described by the symmetric strain tensor €. From strain compatibility, the internal displacement

vector AL is related to the original undeformed vector L, by virtue of:
AL; = |Loleijny 5,7=1,2 (5.10)

Relative normal and tangential displacements 4, and §; can be calculated from:

ALin,'
5,; = IL | = Eggneny

A L:t,- (5.11)
b= T = eting

Expressions (5.11) can also be written in terms of the invariant quantities and principal directions
associated with tensor € (equations (4.18) and {4.19)). Hence:

1
b, = 5{6,1 +ercos2(0 —0¢)}

1
& = —2‘{61,, ~ & sin2[t9 - 9,_-)}

(5.12)

Now imagine that the continuum is replaced by a large assembly of elastic discs and that L.,
represents an undeformed contact vector for the dashed disc shown on the figure. The normal and
tangential contact forces acting at the contact associated with L, may be assumed proportional to the
relative displacements components. If relative displacement components for all contacts are grouped

according to orientation then, average contact forces may be described by:

Fo(0) = Knbo(6) = %(en +epcos2(6— 6.)) o
5.13
7o) = K5 (0) = 5‘21(% ~ esin2(8 — 6.))
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Here, K,, and K are coeflicients of proportionality which depend on particle stiffuess and assembly
microstructure (Rothenburg, 1980). The distributions abuve have the same functional form as the
assumed distributions for ?;(0] and f, () given by relstionebinps (3.22) and (3.23). In fact, the
arguments just presented have been taken from Rothenburg (1944], who used the same non-rigorous

ez a2 second-order Fourier

approach to intuitively justify contact force distributions lor planar »
series expressions. The results of numerical simulations sheaw ihat the furn of these contact force

distribution functions is preserved for cohesionless assernblies of s

Bonded assemblies cannot change their structure under sleviataie boading {ie. S remains zero)

hence, any increase in load-carrying capacity under shearing diforins Jeviator

wepuaded Lo

that at

tensor quantities describing only contact forces. The distribunlion fuses e
contact orientations close to the minor principal strain direction, avrrage wormalcontact forees f(6)

will be reduced below the average (compressive) normal contait foss b the uimber of

individual tensile contact forces will be higher. If our hypethetssal fonly made
cohesionless, by disrupting interparticle bonds, then contacts with tenaile sentasi sernril force would
be lost. Consequently, generation of tensile contact forces which wruld wiharwise « 7 i boaded
systems translates to loss of contacts In cohesionless assetmllies whete rassiang ielos 1z
possible, Using the non-rigorous arguments above, it i1 not auypeisii

describing contact density with respect to orientation have a vignally =

the distribution of normal contact forces.

The lack of fully-mobilized tangential contact forcea in phy
cohesionless two-dimensional particulate systems is well eatablished
generate and sustain significant tangential interparticle forces is dus £ the Lo = of fosking and
unlocking or (micro-hardening and micro-softening). These provesses wihich oorur at the microscale,
are obscured in large samples but are manifest in smaller sampler as Jow smphiude Huctualions

superimposed on macroscale stress-strain curves. These Huctnations are sesdily apparent 1 aurmercal

simulations. Similar fluctuations have been observed in ghear Lox tests caviied ot on g balloting

by Skinner (1969) (Figures 1.6a and 1.6b).

As a result of observations which show that tensorial quantit s by Dbt 10 andd normal
contact forces ' are similar and coaxial and the direct conivibutian of Cageniod contack forces T
is small, it appears that it is the distribution of contact normal furves whi s prnmacily responsible
for the generation of fabric anisotropy. Iun simiple erma, mcicmwental sheanmy delormations wlhich

are initiated at the sample boundary generate s new set of normal contact foreer which cause local




instabilities within load-carrying chains. These Jocal instabilities cause movement of particles, gen-

eration and loss of contacts in preferred directions, and redistribution of load between existing and

newly-created chains such that static equilibrium s preserved. Qrannlor syste

ms are always close to

static equilibrium under the low rates of strain fumiliar te moat =0l meclusnics applications and con-

sequently, by tracing the contributions to static eguilibrivin, powerinl constraints 1o assembly stress

can be formulated.

The intimate relationship between fabric and normal contact foree mmsatropy can be appreciated

from Figure 5.46. The figure shows the ratio a, /a plotted againat 5 o wurns
have achieved sufficient mobility to allow contact anisotropy tv dove

forces {i.e assemblies are unlocked). Together, the curves from all tesia zho
deformations, the ratio of normal contact force anisotrvopy 4 ventart wormal
to unity at steady state. The steady state value for a,, /o can only be ok

g

have achieved limiting values for void ratio and coordination snmber. Th

geurt! sinhlies wlich

sirge Lo conlach

w thal under ghearig

E D /i Benda
sapese Blig

relinalion

number is sensitive to the magnitude of disc properties defined by contart s «d interpariicle

friction coefficient. In general, as the magnitude of these paramesors

left. For two-dimensional assemblies of discs with relatively ligh atif

ahift Lo Lhe

and #1025), the steady state coordination number approaches the sinbsmuwm salue of thees predicted

for static redundancy. For frictionless discs (e.g. Test #1006}, the ad

and -y are restricted to a,/a = 1 and v, = 4.0. The Huctuntions

are a consequence of the relatively small values of a generated in this «ep
investigation of the pressure sensitivity of coeflicients of anisotropy wis s
study. However, based on limited data, it is interesting o note that at
identical disc properties converge to about the same coordinalion nuw

stress levels.

If we neglect the contribution of tangential contact forces, thams Jdisc

in their steady state condition as Coulomb-type materials with shoar ¢ ajass

sin goo = Igi

Tn oo

Again, terms sin ¢, and the more familiar expression sin f, , are spuivalens

tons of a./n

TR Pt for this Lest
A sysiemalie

i ihe Current

bedies with

vl

fgll'}vl(’”‘,,‘l]

Values of a,/a < 1 are considered inadmissible for amblien ol «olesmbeons o4, However,

while it cannot be verified from the results of the cwrrent atidy, 1oz Likely

systems of cohesionless non-spherical particles will be able to achiove this cor
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geometrical freedom afforded these systems may result in a Jarger portion of shear capacity derived

from microstructural anisotropy as compared Lo contact lorce anisotropy.

5.6 Inplications to Three-Dimensional Systems

PFundamental expressions, shown to be accurats {or two-dimensional systeins, have three- dimen-

sional equivalents. Many of the comments made in precs elions are valid for three-dimensional

systems with qualifications. For example, expression wnd-order fabric tensor and contact

force tensors are equally valid for three-dimensinnal

: cotaprising spheres or assemblies with
near-spherical particles.

The contribution of tangential contact forces to

ai the macroscale is impossible to

measure but localized lock-unlock processes must also e

‘hich will inhibit the development

of these forces in a true granular media such as sand. li

sible that the topological

constraint imposed by a two-dimensional system is responaibile fur the level of Langential contact force

anisotropy which was observed in numerical experiments, Fot thraedimensional systems, the greater

freedom available for particle interactions may likely diminizh th

cosptrilatian even Torther,

Neglecting tangential contact forces, the calculation of stress 14

# thyes dime

blies comprising spherical or near-spherical particles can be formnls

in a simplified form:

2

a,-,»:mﬁo/ To(ME )ninSd 4,5 - 1,2, 515
Q

Derivation of an equivalent tensorial expression for o;; terms can fie caxt

@it using

for E(Q) and a similar function for T, (1) expressed as:

7 (@)

i

{1+ fijning}
fiz = fii 1# ]

fek =0

If products of coefficients are neglected after substituting (2.40) and {5.16) inte {5.15) the following

expression emerges:

oiy =on{i; + Ii:) t F’N” i ‘ (5.17)

.t = . . i . .
Again, R and F are reduced deviator tensors and are introhiwed for mathematical convenience.

The normal or hydrostatic invariant of average siress becomes:

malofy LR,

o (5.18)

Op =

rising from

QOYL1O D




Figure 5.45 Contact Vector Displacements within a £l
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Similarly, neglecting tangential contact force contributions, the invariant stress ratio a, for assemblies

of spheres or near-spherical particles may be expres

(5.20)

Assuming that the steady state condition for sezemblies of cohesionless spherical or near-spherical

particles is characterized by equal contact normal and poinial contact force anisotropies then, the

following relationship is a useful approximation for these grapnular media ab their ultimate state under

deviatoric loading:

If it were possible to carry out numerical experiments o

ogous to Figure 5.46 could be generated. This figure would ¢omuy

. [ — pr— A R
ratio \/FNUFNG/\/E;J-RU- and the abscissa by a range of ¢o

a maximum value dependent on the size-distribution for the azserably pasth
identified on Figure 5.46 for two-dimensional systems would alzo bs

data extracted from hypothetical tests on three-dimensional syzteing.

21)

reres then, a plot anal-
2 axiz defined by the
s wbh 4, o A4 and
Quadifative lealures

for 1he eqmvalent




CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS PO FURTHER RESEARCIT

6.1 Introduction

The principal objective of the current study has been Lo mvestigate relstionslups hetween stress
and parameters characterizing microstructure and load transmission in leabzed graonlar zystems.
The theoretical basis of the study has been an approach originully reparied by Hothenburg [1080)
and Rothenburg and Selvadurai (1981b). Fundamental relationships developed for thrse dimensiona]
systems have a limited two-dimensional analogue. Verification of fundumantal relationalilpa for bwo-
dimensional granular media has been undertaken primarily through ninmesical simuistion of assemblies
of discs.

The following sections summarize major conclusions drawn {rom ihe rwalis of 1he current slndy
into the micromechanical behaviour of idealized two-dimensional granulas # a2 Pudamenta)
relationships originally proposed for three-dimensional systems aye refis
gained from numerical experiments. Recommendations for further researsh al

the current study are also presented.

6.2 Conclusions
6.2.1 Verification of Fundamental Relationships
1) Developments presented in Chapter 2 showed that a stress tensur for ¢ toina fould be

formulated from consideration of contact vector lengths anid wonta:r st prattieles

static equilibrium. For three-dimensional systems this fundainental

1 o
o= Y FlE Gy

This fundamental expression has the same form for two-dimensional sysisame with 5, 5
results of numerical experiments on 1000 disc assemblies zhosed that e {G 1] coald be
approximated with essentially no error by an expression coniaining averdges of tontact forees
and contact vector lengths over groups of contacts with siniilar ciientationa. The equivalent

expression can be written as:




Mathematically tractable expressions were obtained by considering both three-dimensional and
two-dimensional systems in the limit of infinite, spatially homogeneous granular assemblies. Under

these conditions, the average stress tensor for three-dimensional systems can be written as:

— / L) EQ) Y 4 5=1,2,3 (6.3)
241

The two-dimensional analogue to thia expression is:

P . -
ayj oy / f: 1P (0)E(0) o 1,7=1,2 (6.4)
Assemblies of discs with contach vecter langth distribntions which are independent of orientation

- n4 — N 'y » '
(i.e. {'(8) =1,) can be described lyy a simplified equation of the form:
o = my, L,/ {f""."; @

o L

Truncated Fourier series expressions of the form sriginally proposed by Rothenburg (1980) de-

(6.5)

scribing distributions of contact normal orientations £{#) and distributions of average contact

force components Fo(6) and F,(0) were shown io be re
n i .

apalle approximations to measured
data from physical tests and the results of numerical sxperimenta in the current study. These

expressions are as follows:

E(9) = %{1 +acos2(f ~ 8,) + beosd(d - g} (6.6)
7o (6) = f2{1+ ancos2(6 — 0;)} (6.7)
Fi(8) =~ {arsin2(6 — 0,)} (6.8)

Terms a, a, and a; are called coeffictents of anisotropy. Terms 4, # nt preferred

directions for these distributions.

Substitution of expressions (6.6) through (6.8) into (6.5) together with smmplifving

san T plinng Jed

to manageable expressions between coefficients of anisotropy, prinvipal directions of anzotyopy,

contact density, average contact length and the assembly stress tensor. ning coasiality of
the tensors describing assembly microfeatures, the following expresmions weve derived in o manner
similar to that first reported by Rothenburg (1980):

mu—[ofr(:

on = 2An (6.9)
1of2 ' <

o = ﬁ;;fn_ (a+an +ay) (6.10)
Ief 1 .

aa=—a—;=§(a+an+a¢) (6.11)

o2 1—%(a+an+at)c0520,,
onn 1+ % (a+ an + a;) cos 20,

(612}
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The results of numerical experiments showed that coaxiality of teusorial quantities was valid and

invariant quantities o,, oi, 0¢/o, and the principal stress ralio ou, /oy were predicted within

10% of directly measured values using the alove relationships,
6.2.2 Tensorial Expressions for Fabric and Contact Foreea

1) All essential information on the geometrical arrangsinent of twe-dimensional grannlar media com-

prising discs can be described by a second-order fubric Lénsor W according to

R, (6.13)

eV
The same expression (with ¢,7 = 1,2, 3) is valid for theeedimensonal granular assemblies made
up of spherical or near-spherical particles. Sunilarly, sscsnd-erder tensorial quantities for aver-
age contact normal and tangential contact farce componentz can be valenated from numerical

experiments using:

2) Coeflicients of anisotropy a, a, and a, contained in the expressions (6.6), (6.7) and (6.8) were
. . - , . wl =t =

shown to be invariant quantities of redused rvcond-oedar deviator tensors R, Fy and Fr |, respec-

tively. Directions 4, 87 and 6, were scen to be major principal directions for these second-order

tensors. Reduced deviator tensors are related to R, Iy and Fp in the following manner:

Tensorial expressions for stress quantities can be formulated as follows:

LRy Ty,




6.2.3 Essential Features of Two-Dimensional Numerical Experiments

1) Qualitative understanding of the wicromechanical beliaviowr of two and three-dimensional gran-
ular assemblies during shearing deformations can be given by vecognizing competing processes
in these systems. The first proc 12 assoeinted with saechanizms of duorder manifest at the
macroscale as sample dilation. A fundaniental p:mx,mvﬁmr which qnantifies the average state of
particle packing is contact density m,. For idealized granulag slilies comprising a nnimodal
size-distribution for constituent discs or spheres, i, can be shown tu be 5 a funetion of 3, ¢ and

average particle radius 7,. Superimposed on processes of dizsovsder ave inicrnmachanical proc

of order manifest as anisotropic microstructure. The development of wnisoivegic wicrostrocture

in response to shearing deformations, can be seen in two-dimanainnal imisssral expariments as
chains of contacts which carry higher than average interparticle Toreos in the dive

imum loading. In two-dimensional assemblies, the intensity wf anisitr

measured by the coefficient of anisotropy term a. Physically, the auper

order and disorder lead to net loss of contacts oriented in the minor priniiigal siress direction. All
essential features of microstructure identified with the processes identitied aliwe Yoo poasured

by invariant quantities associated with the fabric tensor R.

Careful examination of numerical assemblies while at, or about, their nltiniste aists {failurs) loads
to the concept of steady state of micromechanical behaviour for gramular visfia 51 largs »
Steady state is characterized by limiting values of statistical quantitis

and contact force anisotropy while the assembly is subject to continuing shensing deformaiions,

Functionally, the term steady state corresponds to the familiar concept v sesiseal 2iate sl
mechanics terminology; the former is preferred however, since it suggests a cluarer notim of the

internal processes which are occurring when a granular system achicves an ulivuate sondition

under deviatoric load.

The results of numerical experiments show that the direct contribution of tanyential {shear)
contact forces (measured by coefficient of anisotropy ai) to assembly shear vapacity is small
Local cycles of interparticle locking and unlocking are though to be responnble Loy the mability of
granular media to sustain significant interparticle tangential forces during shearimy deformations,
The numerical results support the conclusion that assembly microstructure avolves so that systemn

shear capacity is due to contacts and normal interparticle forces which align themselves in the
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direction of maximum loading. Chiins of contacts carrying higher than average contact forces

are characterized by contacis with httle or wo interparticle shear.

Analysis of mobilized friciion between oizes in nnmerical simulations showed that [E(d,)| was
always less than about 30% of the sbearing capacity at assembly contacts. These numerical
results are comsistent with the resnlta of pliysical tests on photo-elastic discs which have shown

that frequency distributions for g0 sre nnimadal aliout g0 == 0 (Oda and Konishi, 1974a).

Numerical tests on two-dimensional assemblies of diges vider pure shear show that the macro-

scopic shearing angle ¢, for these systems at sleady stais (or eritival state) is independent of the

fully-mobilized friction angle available to disc contacts. Th# samne phenomenon has been reported

by Skinner (1969) from the results of shear box tests on glas ballotinn.

The macroscopic stress-strain behaviour of numerical asseimbliss was vhaerved to be sensitive to
the magnitude of values assigned to disc properties. The tests w that, i general, tests with
higher interparticle stiffness {defined by k,r) and friction angle i, a iller, exlubit greater shear
capacity and are less likely to exhibit strain-softening at post-pesk shear strength, The ufluence
of the magnitude of disc properties on global response can be traced fo incresses in contributing

anisotropies. In general, values for a, a, and a; were seen to increass with g and k,r.

At steady state, the quantity a,/a describing the ratio of normal contaci foree anisotropy to con-
tact normal anisotropy was observed to approach unity under monotonic shearing deformations.
The steady state value {an/a),, = 1 was observed only after limiting values for coordination
number and void ratio were achieved through sample dilation. The steady state coordination
number v, like other microstructure descriptors, was influenced by the magnitude of Jdizc prop-
erties. The limiting value for coordination number, v, was observed to Jecr \ae with Inereasing
assembly stiffness and interparticle shear capacity. For assemblies with high stiffneas contacts con-
sidered typical of actual granular media, the steady state coordination number 7, approaches
the value of 3 predicted for static determinancy in these systems. Based on limited data, the
ultimate value for coordination number from pure shear and biaxial compiession tests appeared

to be independent of normal stress levels applied to numerical assemblies.

Based on the observation that a; is small and the ratio a,/a tends to unity at steady state then,

the anisotropic microstructure at (ultimate) failure in numerical assemblies can be related to a
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macroscopic Coulomb friction angle ¢, according to:

(6.21)

The distribution of average comact vecior lengths was Found 19 be s constant at all strains
. a4 T P . . B . .

according to [ (0) = [, for agsembling of dizcs witl 3 smosth sizedistnbution, However, the value

of average contact vector length [, was found Lo be biaged] ju faveur of the larger dise sizes when

a bimodal size distyibution was used.

The results of numerical simulations on two-dimensional ¢ nhblies of 43 qesveed that fourth-
order anisotropic microstructure measured by pavamelor & was propannzed ak barge deviatoric
strain in samples close to steady state. However, the test resnlis support the th 1]
hypothesis that the direct contribution of fourth-order structire o sssembly shear capacity is

negligibly small.

6.3 Implications to Three-Dimensional Systems

6.3.1 General

The formulations presented for idealized two-dimensional granular syatems lave eoire: _a,e;m-lying
three-dimensional expressions. Micromechanical behaviour observed during symerical sigulations
offers some guidance in proposing fundamental relationships between stress yuastities amd quantibies
describing microstructure and the distribution and magnitude of centact Ix 1 grannlar media

comprising spherical or near-spherical particles.
6.3.2 Proposed Fundamental Relationships for Three-Dimensions! Graoular Assemblies

1) The inability of numerical assemblies to develop significant tangential {ahene] sontant forves during
shearing deformations is considered a valid assumption for three-dimensional llies oo pris-
ing cohesionless particles. Neglecting tangential contact forces leads to the {fullowing fundamental
relationship between assembly stress and functions describing the distributiin of norual rontact

forces and microstructure:

Cij = m.,?o/ ﬁ‘(ﬂ)E(Q)nfnj a0 8,7 =123
Q

Tensorial expressions for stress quantities can be formulated as foHows:

Okk loRkkFNkk
o.n = —— ,—————

3 3
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14 (6.26)

UYL [l

Based on experieuce from two-dimensional numerical stusdies, the Umiting ratio for the invariont
stress ratio may be expected to occur simultaneously with microstiviture ¢ha dgad by a

steady state coordination number ., = 4.

6.4 Recommendations for Further Research

6.4.1 General

The results of the current investigation pose potentially rewarding avennes of vesesych into the
micromechanical behaviour of granular media. Minor modifications Lo program DIE will allow nu-

merical experiments to be carried out on more complex cohesionless assemblise it fon
6.4.2 Two-Dimensjonal Cohesionless Assemblies

1} A major simplification in the theoretical developments leading to expression {661 for amsemblies
of discs is the (correct) assumption that contact vector lengths are independent of srisnbation
(i.e. I°(8) = 1,). However, this assumption is invalid for assemblics which «oimprise non-cirenlar
particles. The added degree of freedom afforded granular assemblics by more s crnplex particle
geometry must be accounted for in fundamental relations equivalent to [6.55) A review of the

literature suggests that anisotropy in average contact vector lengths can be smgnifivant, Az a first

attempt, anisotropy in Zc(ﬁ) can be described by a truncated Fourier series expression anch as
- -
U(8) =1{1+acos2(8 — )}

Coeflicient of anisotropy a; and direction of anisotropy #; can be equated o 4 symmelric second-

order contact length tensor L defined by:

{6.28)

. o from
ity reoarding copyright ansn'lg ! :




Like the fabric tensor R, the tensor L retsins its {orm in three-dimensions. If the same analytical
approach reported in Chapters 2 and 3 s adopted then, stress quantities g5 for two-dimensional

assemblies comprising (say) ovabshaped particles may be usefully approximated by:
{6.29)

The relationship hetween the tensors comprising this expression would have to be carefully stud-
ied. It is likely thiat there is a significant correlation bebwesn quantities describing contact orien-

tatious and coutact tengths in these ay

2) The results of numerical simulutions bave sliows that guantities deacribing microstructure are,
in general, pressure sensitive, particularly sysieme with santacts. 1lowever, the results of

the investigation lhold out the enticing prospect that vy 5 o of conlining stress, steady

state values for coordination number may be relatively pressgrs tive, The resulls of the

current investigation suggest that a systematic sbudy of the s ween conbact {orces
and parameters describing microstructure be undartaked fst Boa wider range of (

properties.
6.4.3 Bonded Assemblies of Discs

1) Fundamental equations of the form (6.5) are equally valid for bend
can be easily examined by using a slightly modified version of progyain 13
cohesion to assembly contacts. Constitutive relationships for honded
stiffnesses can be formulated using the following approach: Expre

as:

_1(49) = g-k—gi(sn + &g cos2(0 - 4,))

v | (6.50)

7?(6’) =¢ r(s,,, —~ g sin2(0 - 0,))

Here, k,, and k, are normal and tangential (shear) contact stiflnesses and ¢ is a paramelor proposed
by Rothenburg (1980) which is related to microstructure. Substitution of wiuasione (.30} into

{6.5) leads to constitutive relationships of the form:
oij = Aijkrert 4,0,k 1=1,2
Terms A;jx; can be calculated from:

27
Asjrr = mulos'knf_/ E(0){ninjnini + Minjtini} df
0
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Here A = k,/kn and E{f) is resiricted to a second-order expression E(0) = z=(1 + amnng,ng)-

Equivalent expressions to {6.32) can be recovered from relationships proposed by Rothenburg
(1980}). The above expressions directly equate macroscopic anisotropic elastic behaviour in these
systems to parameters which describe anisotropic microstructure. Rothenburg (1980} points out
that symmetry of the stress tensor o5, is pot, in general, satisfied by (6.31). However, symmetry
is unconditionally satisfied for isotropic microstructure (i.e. E(f) = 1/2x) or when A = 0. Simple
numerical experiments can be performad lmiﬁg a modified version of program DISC to verify the

constitutive relations proposed above.




APPENDIX A

LISTINGS FOR PROGRAMS /3¢ AND AUTODISC
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1.000 C

2.000 PROGRAM DISC
3.000 C
4.000 G*****2.D PROGRAM TO MODEL THE MECHANICS OF A GRANULAR

5,000 C MEDIUM CONSISTING OF D PP ARBITRARY RADII

INCT BLEMENT METHOD

6.000 C PROGRAM IMPLEMENTS 1

7.000 C  (STRACK AND CUNDALL {1978}))

8.000 C

9.000 C*****INITIALIZE PROGEAM

10.000 C

11.000 CALL INITP

12.000 C

13.000 C*****RUN PROGRAM

14.000 C

15.000 CALL CYCLE

16.000 C

17.000 C*****CLOSE FILES

18.000 C

19.000 CLOSE (1,8TATUS="KRLP")

20.000 CLOSE (10,STATUS='KEEI"")

21.000 CLOSE (13,5TATUS="KEELP")

22.000 CLOSE (15,STATUS="KEEI"")

23.000 CLOSE {(UNIT=B,STATUS="DELET

24.000 C

25.000 STOP

26.000 END

1.000 C

2.000 SUBROUTINE INITP

3.000 C

4.000 C*****INITIALIZE DATA AND DISC ASSEMILY

5.000 C

6.000 DIMENSION B{17000)

7.000 VIRTUAL B*(STATUS=UNKNOWN,BUF=200,I0%TAT »1T)
8.000 C

9.000 COMMON JARAY/ A(108910)

10.000 COMMON /ERAY/ E(10000)

11.000 COMMON /BDAT/ R(50),DENS(50),AKN(50),ALS(50), A x5 {5015 0k B{5H0), AMOI50)
12.000 COMMON /MOD/ EBVEL(2,2),SGAIN,BSTR(2,2)
13.000 COMMON /BSTR/ BSIG(2,2).BSIGO(2,2),BSIGD{2,2}
14.000 COMMON /BBAL/ BBALL(1000),NB,AREA

15.000 COMMON /CIRC/ IBCIRG(2000),NBT

16.000 C

17.000 GLOBAL ALPHA,BETA,P1L,TDEL,FRAC,FIRST

18.000 GLOBAL CON1,CON2,BDT,ADDT,ADDX,TOL,M2,M3,NBALL, It MA
19.000 GLOBAL NCBOX,M1,M4,NBOX,NX,NY,DEL,GRAVX,GRAVY 1AEN BREY
20.000 GLOBAL NCYC,NCYCS,NCYCF ,NDUMP,NRCYC,NRLCY ¢, TI'LE
21.000 GLOBAL XCR(10),YCR(10),RCR(10),NCIRC,NCHECK
22.000 GLOBAL SFLAG,FFLAG,RSFLAG,2FLAG,MODE,EKEY
23.000 C

24.000 LOGICAL ZFLAGRSFLAG,SFLAG,FFLAG

25.000 INTEGER BKEY,EKEY,FIRST

26.000 CHARACTER*60 STATUS, TYPE,ZERO,BINFILE,EFILE, TITLE
27.000 C

28.000 DATA RMAX/0.0/ TDEL/1.0E+20/ RMIN/1.0E+20/
29.000 DATA TOL/2.9/ ADDX/1.0/ AADT/0.0075/

30.000 C

31.000 C*****OPEN INSTRUCTION FILE

32.000 C :
33.000 OPEN(1,FILE='INPT",STATUS="OLD’, ACCESS="KEYED',FORM="FORMATTE"}
34.000 C

35.000 C*****OPEN DATA FILES AND SET FLAGS

36.000 C

37.000 READ (1,'(A40)") TITLE

38.000 READ (1,'(A10)") STATUS

39.000 READ (1,'(A10)") BINFILE

40.000 READ (1,'(G.0)") BKEY

41.000 READ (1,'(A10)") EFILE

42.000 READ (1,'(G.0)) EKEY

43.000 READ (1,'(A10)") ZERO

44.000 READ (1,'(A10)") TYPE

45.000 READ (1,'(G.0)") MODE

46.000 READ (1,'(G.0)") FIRST

47.000 C

48.000 IF (STATUS.EQ.START’) SFLAG=.TRUE.

49.000 IF (STATUS.EQ.'RESTART') RSFLAG=.TRUE.

50.000 IF (ZERO.EQ."ZERO") ZFLAG=.TRUE.

51.000 IF (FIRST.EQ.BKEY) FFLAG=.TRUE.

52.000 C
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53.000 OPEN (10,NAME=TYPE,STATUS="OLD’, ACCESS="KEYEL  FORM='FORMATTED")

54.000 OPEN (13, NAME=BINFILE STATUS='OLD", USAGE="UPDATE" ACCESS="KEYED")
55.000 IF (SFLAG)GOTO 1000

56.000 OPEN (15,NAME=EFILE,STATUS="OLD’,ACCESS="KEY ED")
57.000 GOTO 1010

58,000 1000 OPEN (15,NAME=EFILE,STATUS="NEW" ACCESS="KEYED")
59.000 C

60.000 C*****READ CYCLE DATA

61.000 C

62.000 1010 READ (1,'(5G.0)") NCYUS,NCY CF,NDUMP,NRLCYC,NRCYC
63.000 NCYC=NCYCF-NCYCS

64.000 C

65.000 C*****INPUT DISC TYPE DATA
6G.000 C CALCULATE MASS AND MOMENT OF INERTIA OF DISC TYPES
67.000 C CALCULATE TIME sTLEP

G8.000 C

G9.000 PI=4.0*ATAN(1.0)

70.000 C

71.000 DO 1020 I=1,50

72.000 NBTYP=I-1

73.000 READ (10,’(7G.0)", END= 1030} (1), DENS(I),AKN(1),AKS(I),AMU (1), COH(I)
74.000 RMIN=AMIN1(RMIN,T(1))

75.000 RMAX=AMAXI(RMAX,E(1)}

76.000 AMASS(I)=PI*R(I}*R (1) * I EN3{1)

77.000 AMOI(I)=AMASS(I)*R(1)* 1 (1) /2.0

78.000 TN=2.0*SQRT(AMASS{1)/AKH (1))

79.000 IF (AKS(I).EQ.0.0) TDEL= AMINI(TN,TDEL);GOTO 1020
80.000 TS=2.0*SQRT(AMASS(I)/ALLE(1))

81.000 TDEL=AMIN1(TN,TS,TDEL)

82.000 1020 CONTINUE

83.000 C

84,000 C*****READ CONTENTS OF BINARY FILE

85.000 C

86.000 1030 READ (13, KEY=BKEY) A(1)

87.000 IAEND=A(1)

88.000 READ (13,KEY=BKEY,ER L= 1040) (A(I),I=1IAEND)

89.000 1040 BKEY=BXEY+1000

90.000 C

91.000 W=A(2);H=A(3);NBOX=A(1);NDALL=A(6);NCBOX=A(7);NX=A(8)
92.000 NY=A(9);DEL=A(10);M1=A{11);M2==A(12);M3=A(13);M4=A(14)
93.000 C

94.000 C*****INPUT BOUNDARY STRAIN-BATE TENSOR VALUES;
95.000 C SERVO GAIN;

96.000 C BOUNDARY STRESS TENSOR VALUES;

97.000 C

98.000 1050 READ (l,’(7G.0)’) EBVEL{ l.l_)JCDVEL(1.2),EBVEL(2,2),SGAIN,BSTR(I,1),BSTR(1,2),BSTR(2,2)
99.000 EBVEL(2,1)=EBVEL(1,2)

100.000 BSTR(2,1)=BSTR(1,2)

101.000 C

102.000 C*****SETUP STRESS TENSOR. ALR
103.000 C AND DETERMINE INITIAL AS:

AYS FOR SERVO-CONTROL MODES 2-5
SEMBLY BOUNDARY DISCS AND AREA

104.000 C
105.000 CALL BBOUND
106.000 CALL BVOLUME
107.000 1060 IF (MODE.EQ.1) NCHECK=10:;G(2TO 1080
108.000 CALL BSTRESS
109.000 DO 1070 I=1,2
110.000 DO 1070 J=1,2
111.000 BSIGO(I,J)=BSIG(1,J)
112.000 1070 BSIGD(I,J)=BSTR(I,J)-BSIGO(L.J)
113.000 C
114.000 C*****INPUT DAMPING PARAMETERS
115.000 C

’ 116.000 1080 READ (1,'(2G.0)’) ALPHA,BETA

117.000 C
118.000 C*****FRACTION OF CRITICAL TIME-STEP
119.000 C
120.000 READ (1,’(G.0)") FRAC
121.000 TDEL=FRAC*TDEL
122.000 C
123.000 C*****INPUT X AND Y GRAVITY ACCLLERATIONS
124.000 C
125.000 READ (1,'(2G.0)’) GRAVX,GRAVY
126.000 C
127.000 C*****SET UP DAMPING TERMS
128.000 C
129.000 CON1=1.0-ALPHA*TDEL/2.0
130.000 CON2=1.0/(1.0+ALPHA*TDEL/2.0)
131.000 BDT=BETA/TDEL
132.000 C
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133.000 C*****INPUT SUB-ASSEMDBLY CILc LI DATA

134.000 C

135.000 READ (1,'(G.0)’) NCIRC

136.000 IF (NCIRC) 1110,1110,1090

137.000 1090 DO 1100 I=1,NCIRC

138.000 1100 READ (1,(3G.0)') XCR[I). Y :T{1] eeili(lj
139.000 C

140.000 C*****ZERO DISC VELOCITIES

141.000 C

142.000 1110 IF {(ZFLAG)GOTO 1120

143.000 GOTO 1140

144.000 C

145.000 1120 IAB=M2

146.000 DO 1130 I=1,NBALL

147.000 A{IAB+2)=0.0

148.000 A(IAB+3)=0.0

149.000 A(IAB+4)=0.0

150.000 1130 IAB=IAD+14

151.000 C

152.000 C*****INITIAL TEST CONDITIONS TO EX'THALY ARBAY
153.000 C

154.000 1140 IF ((NOT.FFLAG) READ (15 KEY = REEY - 108 A4 2801 {E(1], 1 1,10000)
155.000 DO 1150 1=1,14

156.000 1150 E(I)=A(I)
157.000 1160 E(15)=NBTYP
158,000 E(16)=ALPHA
159.000 E(17)=BETA
160,000 E(18)=FRAC
161.000 E(19)=TDEL

162.000 E(20)=CGRAVX
163.000 E(21)=CGRAVY
164.000 E(22)=TOL

165.000 E(24)=ADDX
166.000 E(25)=AADT

167.000 E{26)=BDT

168.000 E(32)=NCIRC

169.000 E(33)=NRLCYC

176.000 C

171.000 C*****BOUNDARY-CONTROL DATA TO E ARKAY
172.000 C

173.000 E(64)=MOQODE
174.000 E(65)=SCGAIN
175.000 E(66)=BSTR(1,1)
176.000 E(67)=BSTR(1,2)
171.060 E(68)=BSTR(2,2)
178.000 E(69)=EBVEL(1,1)

179.000 E(70)=EBVEL(1,2)

180.000 E(71)=EBVEL(2,2)

181.000 C

182.000 C*****IDENTIFY DISCS FORMING INITIAL BOURDARY «¥ 5 :
183.000 C

184.000 IF (NOT.FFLAG)GOTO 1180

185.000 IAB=400

186.000 E(IAB)=NB

137.000 E(IAB+1)=AREA
188.000 IAB=IAB+2
189.000 DO 1170 I=1,NB

190.000 E(IAB)=IAD=BBALL(I)

191.000 E(IAB+1)=A(IAD)+A(IAD+11)

192.000 E(IAB+2)=A(IAD+1)+A(IAD+12)

193.000 1170 IAB=IAB+3

194.000 C

195.000 C*****LOAD VIRTUAL FILE 'B’ WITH INITIAL DIS DATA
19G6.000 C

197.000 1180 IF ((NOT.FFLAG)READ (13, KEY=FIRST LRI~ 11801 {137} {1 M3y
198.000 1190 IF ((NOT.FFLAG) RETURN

199.000 DO 1200 I=1,M3

200.000 1200 B(I)=A(I)

201.000 C

202.000 1210 RETURN

203.000 END

sibility regarding copyright arising fro



1.000 C

2.000 SUBROUTINE CYCLE

3.000 C

4.000 C*****THIS ROUTINE CONTROLY MAIN CALCULATION CYCLE FOR
5.000 C NEAR-CIRCULAR ASSEMBLY OF DIsCS

6.000 C

7.000 COMMON /ARAY/ A{108010)

8.000 GLOBAL NCYGC,NBALL,M2.NDUMIHN JAEND,BKEY, BDFLAG,RFLAG
9.000 LOGICAL RFLAG,BDFLAC

10.000 INTEGER BKEY

11.000 C

12.000 NDUMPI=NDUMP

13.000 CALL BBOUND

14.000 CALL BVOLUME

15.000 CALL BSTRESS

16.000 C

17.000 DO 1040 NN=31,NCYC

18.000 C

19.000 C*****COMPILE X STATEMENT T GUTPOT 2YULE COUNT TO TERMINAL DEVICE
20.000 C

21.000 X OUTPUT,NN

22.000 C

23.000 C*****APPLY SERVO-CONTROLLEL LISFLACEMENTS TO

24.000 C  ASSEMBLY BOUNDARY

25.000 C

26.000 CALL SRVMOT

27.000 C

28.000 C*****SCAN ALL DISCS

29.000 C

30.000 IAB=M2

31.000 DO 1010 I=1,NBALL

32.000 IF {A{JAB+8)) 1000,1000,1010

33.000 1000 CALL MOTION(IAB)

34.000 IF (RFLAG) CALL REBOX(IAD)

35,000 1010 IAB=IAB+14

36.000 C

37.000 C*****APPLY FORCE/DISPLACEMENT LAW TO ALL 1 {
38.000C COMPUTE BOUNDARY CONTAGT CONTRIBUTTONSE ) ABREMRLY 8THESE TENSOR
39.000 C

40.000 CALL FORD

41.000 C

42.000 C*****UPDATE BOUNDARY DISC LIST IF REQUIRED
43.000 C

44.000 IF (BDFLAG) CALL BBOUND2; CALL BVOLUME
45.000 C

46.000 C*****RELAX ASSEMBLY AND DUMP DATA TO EXTRACT FILE
47.000 C

48.000 1020  IF (NN-NDUMP} 1040,1030,1040

49.000 1030 CONTINUE

50.000 CALL RELAX

51.000 CALL EXTRACT

52.000 CALL BBOUND

53.000 CALL BVOLUME

54.000 NDUMP=NN+NDUMPI

55.000 C

56.000 1040 CONTINUE

57.000 C

58.000 C*****DUMP FINAL ASSEMBLY DATA TO BINARY CONFIGURATION FILE
'59.000 C

60.000 WRITE (13,KEY=BKEY,ERR=1050) (A(I),]=1,IAEND)
61.000 1050 CONTINUE

62.000 C

63.000 RETURN

64.000 END

1.000 C

2.000 SUBROUTINE BBOUND

3.000 C

4.000 C*****PROGRAM IDENTITIES DISCS FORMING CONVEX POLYGON BOUNDATY FoR
5.000 C A NEAR-CIRCULAR ASSEMBLY OF DISCS
6.000 C SEARCH BASED ON "ALL" ASSEMBLY DISCS
7.000 C

8.000 COMMON /ARAY/ A(108910)

9.000 COMMON /BBAL/ BBALL{1000),NB

10.000 GLOBAL M2,NBALL,PI

11.000 DATA SMALL/1.0E-20/ Y /10000./ BETO/0./
12.000 C

13.000 C*****ZERO BBALL ARRAY

14.000 C




15.000 DO 1000 I=1,NB
16.000 1000 BBALL(I)=0.

17.000 C

18.000 C*****FIND LOWEST DISC IN ASSEMBLY {ndilieass IHFST)
19.000 C

20.000 IAB=M2

21.000 DO 1010 I=1,NBALL

22.000 A(IAB+8)=0.0

23.000 Y=A(IAB+1)+A{IAB+172)

24.000 IF (Y.LT.YO) IBLST=1AB XN O e AUALY) P ATIATS 11 BEY Oe A (TAB+1)+A(IAB+ 12)
25.000 1010 IAB=IAB+14

26.000 BBALL(1)=IBFST=IBLST

27.000 A(IBFST+8)=1.0

28.000 C

29.000 C*****FIND SEQUENCE OF BOUNDARY b
30.000 C MINIMUM CHANGE IN ANGLE BETW
31.000 C CENTRES OF DISCS

R BL LN

SCTING

32.000 C

33.000 NB=1

34.000 1020 ALPMIN=2*PI

35.000 IAB=M2

36.000 DO 1040 I=1,NBALL

37.000 IF (IAB.EQ.IBLST)GOTO 1040
38.000 DX=A{IAB)+A(IAB+11)-XO
39.000 DY=A(IAB+1)+A(IAB+12)-YO
40.000 IF (ABS(DX).LT.SMALL) BET=SICGN (PI/2 1% )55
41.000 BET=ATAN2(DY,DX)

42.000 1030  IF (BET.LE.SMALL) BET=2*PI+BET
43.000 ALP=BET-BETO

44.000 IF(ALP.EQ.0.0)GOTO 1031

45.000 IF (ALP.LT.-0.001)GOTO 1040
46.000 IF (ALP.GT.ALPMIN)GOTO 1040
47.000 1031  IBMIN=IAB

48.000 ALPMIN=ALP

49.000 BETMIN=BET

50.000 1040 IAB=IAB+14

51.000 C

52.000 C****FILTER TO CATCH CONDITION FOR ALP=ALPMIN
53.000 C

54.000 IF(ALP.EQ.ALPMIN) GOTO 1051
55.000 GOTO 1052

56.000 1051 XO=XO-A(IBLST+11)

57.000 YO=YO-A(IBLST+12)

58.000 GO TO 1020

59.000 1052 CONTINUE

60.000 C

61.000 DO 1050 I=1,10

62.000 1050 IF (IBMIN.EQ.BBALL(I)) RETURN
63.000 C

64.000 NB=NB-+1

65.000 XO=A(IBMIN)+A(IBMIN+11)
66.000 YO=A{IBMIN+1)+A(IBMIN+12)
67.000 BBALL{NB)=IBLST=IBMIN

68.000 A(IBMIN+8)=1.0

69.000 BETO=BETMIN

70.000 GOTO 1020

71.000 C

72.000 END

1.000 C

2.000 SUBROUTINE BVOLUME

3.000 C

4.000 C*****PROGRAM CALCULATES AREA OF NEAR-CIRCULAR ASSEMBLY
5.000 C OF DISCS (from TOTAL ASSEMBLY)

6.000 C 1) Volume described by convex polygon of straight-line
7.000 C segments joining boundary discs

8.000 C

9.000 COMMON /ARAY/ A(108910)

10.000 COMMON /BBAL/ BBALL(1000),NB,AREA
11.000 REAL MIDY

12.000 DATA AREA/0./

13.000 C

14.000 DO 1030 I=1,NB

15.000 IF (LEQ.NB)GOTO 1000

16.000 GOTO 1010

17.000 1000 IB2=BBALL(1)

18.000 GOTO 1020

19.000 1010 IB2=BBALL(I+1)
20.000 1020 IB1=BBALL(I)




21.000 MIDY=(A(IB2+1)+A{IB2+12)+A(IB1-+1)+A(IB1+12)) /2.0

22.000 DX=(A(IB2)+A(IB2-+11)-A{IB1)-A(IB1+11))
23.000 PART=-MIDY*DX

24.000 1030 AREA=AREA+PART

25.000 C

26.000 RETURN
27.000 END

1.000 C

2.000 SUBROUTINE BSTRESS

3.000 C

4.000 C*****PROGRAM CALCULATES BOUN ﬁ/‘\h\' STRESS TENSOR VALUES
5.000 C FOR TOTAL ASSEMBLY OF DINCE USING SUM OF IMi x Lj TERMS
6.000 C

7.000 COMMON /ARAY/ A{108010)

8.000 COMMON /BBAL/ BBALL{1000),ND AREA

9.000 COMMON /CIRC/ IBGIRG{2000), N BT, 1CONT(4000),NCS
10.000 COMMON /BSTR/ BSIG(2.2

11.000 COMMON /BDAT/ R{50)

12.000 GLOBAL M1,NBOX

13.000 DATA SUM11/0./ SUM12/0./ 8UM21/0./ sUM22/0./
14.000 C

15.000 DO 1060 NBX=MI1,M1+NBOX-1

16.000 IAD=A(NBX)

17.000 1000  IB1=A(IAD)

18.000 IF (IB1) 1060,1060,1010

19.000 1010  IB2=A(IAD+1)

20.000 ITAG1l=A(IB1+8)

21.000 ITAG2=A(IB2+8)

22.000 L=ITAGI+ITAG2+1

23.000 C

24.000 C*****DO NOT INCLUDE CONTRIBUTION DUE TO CONTACT BETWEERN
25.000 C TWO BOUNDARY DISCS

26.000 C

27.000 GO TO (1020,1020,1050)L

28.000 C

29.000 1020  XDIF=A(IB1)+A(IB1+11)-A{IB2)-A(IB2+11)
30.000 YDIF=A(IB1+1)+A(IB1+12)-A(IB2+1)-A(IB2+12)
31.000 D=SQRT(XDIF*XDIF+YDIF*YDIF)

32.000 CA=XDIF/D

33.000 SA=YDIF/D

34.000 FX=A(IAD+4)*CA+A(IAD+5)*SA

35,000 FY=A(IAD+4)*SA-A(IAD+5)*CA

36.000 GO TO (1040,1030,1050)L

37.000 C

38.000 1030 D=ITAGI1*R(A(IB2+9))+ITAG2*R(A (IB1+9))
39.000 1040  SUMI11=SUMI11-FX*CA*D

40.000 SUM12=SUMI12-FY* CA"D
41.000 SUM21=SUM21-FX*SA*D
42.000 SUM22=SUM22-FY*SA*D
43.000 C

44.000 1050 TAD=IAD+6

45.000 GOTO 1000

46.000 1060 CONTINUE

47.000 C

48.000 BSIG(1,1)=SUMI11/AREA
49.000 BSIG(1,2)=SUM12/AREA
50.000 BSIG(2,1)=SUM21/AREA
51.000 BSIG(2,2)=SUM22/AREA
52.000 C

53.000 RETURN

54.000 END

1.000 C

2.000 SUBROUTINE SRVMOT
3.000 C

4.000 C*****PROGRAM APPLIES BOUNDARY VELOCITY INCREMENTS TO CENTRES
5.000 C OF BOUNDARY DISCS OR NON-SERVO ACTIVATED DISC FORCES
6.000 C ACCORDING TO A PRESCRIBED BOUNDARY STRESS TENSOR.

7.000 C

8.000 C 1) APPLIED horizontal and vertical boundary velocities

9.000 C are calculated from contribution of prescribed BOUNDARY

10.000 C STRAIN-RATE TENSOR EBVEL(I,J) and servo BOUNDARY STRAIN-
11.000 C RATE TENSOR ECVEL(I,J) required to keep boundary stresses

12.000 C at desired levels.

13.000 C 2) SSRVX,SSRVY =x,y incremental velocities from

14.000 C prescribed boundary strain-rate tensor

15.000 C 3) BSRVX,BSRVY =x,y iucremental velocities from

16.000 C servo boundary strain-rate tensor
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17.000 C 4) SRVX= SSRVX +DBSRVX applicd boundary x velocity
18.000 C SRVY= SSRVY+DBSRVY applicd boundary y velocity
19.000 C 5) SGAIN = gain on servo-control

20.000 C

21.000 C

22.000 DIMENSION ECVEL(2,2)

23.000 GLOBAL BDFLAG MODE RFLAGNN,NRCYC

24.000 GLOBAL CON1,CON2,GRAVX, GRAVY, TDEL,ADDX,ADDT
25.000 COMMON JARAY/ A{108010)

26.000 COMMON /BDAT/ R(60),DENS(50),AKN(50),AKS(50),AMU(50),COH(50),AMASS{50},AMOI{50)
27.000 COMMON /BBAL/ BBALL{Junn), N3

28.000 COMMON /MOD/ EBVEL(S SAIN,DSTR(2,2)

29.000 COMMON /BSTR/ DSIG2,2), B51:30(2,2),3SIGD(2,2)
30.000 LOGICAL RFLAG,BIDFLAG

31.000 BDFLAG=.FALSE.

32.000 C

33.000 IF (NN.GT.NRCY () PROPw Loy G010 1000

34.000 PROP=FLOAT(NN)/NJi:Y

35.000 1000 GO TO({1010,1020,1030, 1040, 1560, 14670,1080) MODE
36.000 C

37.000 C*****MODE | (STRAIN-CONTROLLED BOUNDARY)
38.000 C

39.000 1010 ECVEL(1,1}=EOVEL{L,2)=BOVEL{E ) = EOVRL{2,2)=0
40.000 GOTO 1100

41.000 C

42.000 C*****MODE 2 (SIGMA1l CONSTANT)

43.000 C

44.000 1020 DIFF=BSIG(1,1)-BSIGO(1,1)-BSIGD{1,1)*PROD

45.000 DENM=BSIGO(1,1})+BSIGD(1,1)*PROT

46.000 ECVEL(1,1})=SGAIN*DIFF/DENM

47.000 VEL=AMAXI1(ABS(EBVEL{2,2)),ABS(RCYEL{1, i1}
48.000 ECVEL(2,2)=SIGN(VEL,EBVEL(2,2}) '

49.000 ECVEL{1,2)=ECVEL(2,1)=0.0

50.000 GOTO 1100

51.000 C

52.000 C*****MODE 3 (HYDROSTATIC)

£3.000 C

54.000 1030 HYDRO=(BSIG(1,1)+BSIG(2,2))/2.0

55.000 HYDROC=(BSIGO(1,1)+BSIGO(2,2)+(BSIGD(1,1) +BH1 L {2,2))* PROP) /2.
56.000 VEL=SGAIN*(HYDRO-HYDROC)/HYDROC

§7.000 IF (ABS(VEL).GT.SGAIN) VEL=SIGN{SGAIN,VEL)
58.000 ECVEL(1,1)=ECVEL(2,2)=VEL

59.000 ECVEL(1,2)=ECVEL(2,1)=0.0
60.000 GOTO 1100

61.000 C

62.000 C*****MODE 4 (SERVO-CONTROLLED)
63.000 C

64.000 1040 DO 1050 1=1,2

65.000 DIFF=BSIG(I,I)-BSIGO(I,I)-BSIGD(LI)*PROP
66.000 DENM=BSIGO(I,I)+BSIGD{I,I)*PROP

67.000 VEL=SGAIN*DIFF /DENM

68.000 IF (ABS(VEL).GT.SGAIN) VEL=SIGN(SGAIN,VEL)
69.000 1050 ECVEL(II)=VEL

70.000 ECVEL(1,2)=ECVEL(2,1)=0.0

71.000 GOTO 1100

72.000 C

73.000 C*****MODE 5§ (BOUNDARY FORCE CONTROLLED)
74.000 C

75.000 1060 CALL BNDFORD

76.000 ECVEL(1,1)=ECVEL(1,2)=ECVEL(2,1)=ECVEL(2,2)=0.
77.000 GOTO 1100

78.000 C

79.000 C*****MODE 6 (SIGMA22 CONSTANT)

80.000 C

81.000 1070 DIFF=BSIG(1,1)-BSIGO(1,1)-BSIGD(1,1)*PROP
82.000 DENM=BSIGO(1,1)+BSIGD(1,1)*PROP

83.000 ECVEL(1,1}=SGAIN*DIFF/DENM

84.000 ECVEL(2,2)=EBVEL(2,2)

85.000 ECVEL(1,2)=ECVEL(2,1)=0.0

86.000 GOTO 1100

87.000 C

88.000 C*****MODE 7 (USED FOR STRESS ROTATION)
89.000 C

90.000 1080 DO 1090 I=1,2

91.000 DO 1090 J=1,2

92.000 DIFF=BSIG(L,J)-BSIGO(1,])-BSIGD(I,])*PROP
93.000 DENM=BSIGO(I,J)+BSIGD(I,J)*PROP

94.000 VEL=SGAIN*DIFF/DENM

95.000 IF(ABS(VEL).GT.SGAIN) VEL=SIGN(SGAIN,VEL)
96.000 1090 ECVEL(I,J)=VEL
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97.000 C

98.000 C***** APPROXIMATE CENTRE OF ASSEMDILY

99.000 C

100.000 1100 XCA=A(2)/2.0

101.000 YCA=A(3)/2.0

102.000 G

103.000 C*****APPLY DISC VELOCITY INGEEMENT CORRESPONDING TO PRESCRIBED
104.000 C  BOUNDARY CONDITION/GONTROL [see MOTION)

105.000 C

106.000 DO 1240 I=1,NBB

107.000 RFLAG=.FALSE.

108.000 IAB=BBALL(I)

109.000 ITYP=A(IAB+9)

110.000 AM=AMASS(ITYT)

111.000 AMI=AMOI(1TY )

112.000 XX=A(IAD}-XCA

113.000 YY=A(IAD+1)-Y A

114.000 C

115.000 C*****COMPONENT OF DISC MOTION DUE TO SERVO-CONTROLLED BOUNDARY STRESS
116.000 C

117.000 BSRVX=ECVEL(L 1} XN BV
118.000 BSRVY=ECVEL{2,2)*YY-EY
119.000 C

120.000 C*¥****COMPONENT OF DISC MOTION GUE TO sERVO-CONTROLLED BOUNDARY
121.000 C STRAIN-RATE TENSOR

122.000 C

123.000 SSRVX=EBVEL(L,1}*XX4+BBVEL{),2)"YY

124.000 SSRVY=EBVEL(2,2}*YY+EDBVIEL{2,1)*:

125.000 C

126.000 C*****TOTAL SERVO

127.000 C

128.000 SRVX=BSRVX+SSRVX

129.000 SRVY=BSRVY-+SSRVY

130.000 C

131.000 GO TO(1110,1120,1140,1140,1130,1120, 1120} X132
132.000 C

133.000 1110  A(IAB+2)=SRVX

134.000 A(IAB+3)=SRVY

135.000 GOTO 1200

136.000 1120  A(IAB+2)=BSRVX

137.000 A(IAB+3)=BSRVY

138.000 GOTO 1190

139.000 1130  A(IAB+2)=SRVX+A(IAB+2)

140.000 A(IAB+3)=SRVY+A(IAB+3)

141.000 GOTO 1190

142.000 C

143.000 C*****CHECK THAT SERVO-CONTROL OF BOUNDARY STHESH HOls #oT
144.000 C SWAMP DESIRED BOUNDARY STRAIN-RATE (MODER 3.4}
145.000 C

146.000 1140  IF (BSRVX*SSRVX) 1150,1160,1160

147.000 1150  IF (ABS(BSRVX).GT.ABS(SSRVX)) SRVX=0.

148.000 1160  A(IAB+2)=SRVX

149.000 IF (BSRVY*SSRVY) 1170,1180,1180

150.000 1170 IF (ABS(BSRVY).GT.ABS(SSRVY)) SRVY=0.

151.000 1180  A(IAB+3)=SRVY

152.000 C

153.000 C**¥**CALCULATE REQUIRED BOUNDARY DISC MOTION
154.000 C

155.000 1190  A(IAB+2)=(A(IAB+2)*CON1+(A(IAB+5)/AM+GRAVX)* TDHREL) 0
156.000 A(IAB+3)=(A(IAB+3)*CON1+(A(IAB+6)/AM+GRAVY}* TDIL) ¥ O
157.000 A(IAB+4)=(A(IAB+4)*CON1+A(IAB+7)*TDEL/AMI)*CON2
158.000 1200  A(IAB+5)=0.0

159.000 A(IAB+6)=0.0

160.000 A(IAB+7)=0.0

161.000 A(IAB+11)=A(IAB+11)+A(IAB+2)*TDEL

162.000 A(IAB+12)=A(IAB+12)+A(IAB+3)*TDEL

163.000 A(IAB+13)=A(IAB+13)+A(IAB+4)*TDEL

164.000 IF (ABS(A(IAB+11)).LT.ADDX)GOTO 1210

165.000 A(IAB)=A(IAB)+A(IAB+11)

166.000 A(IAB+11)=0.0

167.000 RFLAG=.TRUE.

168.000 1210  IF (ABS(A{IAB+12)).LT.ADDX)GOTO 1220

169.000 A(IAB+1)=A(IAB+1)+A(IAB+12)

170.000 A(IAB+412)=0.0

171.000 RFLAG=.TRUE.

172.000 1220  IF (ABS(A(IAB+13)).LT.ADDT)GOTO 1230

173.000 A(IAB+10)=A(IAB+10)+A(IAB+13)

174.000 A(IAB+13)=0.0

175.000 RFLAG=.TRUE.

176.000 1230 IF (RFLAG) CALL REBOX(IAB); BDFLAG=.TRUE.
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177.000 C
178.000 1240 CONTINUE

179.000 C

180.000 RETURN

181.000 END

1.000 C

2.000 SUBROUTINE MOTION(1AL})
3.000 C

4.000 C*****PROGRAM CALCULATES HEW VELOCGITIES AND DISPFLACEMENTS FON LAY
5.000 C DISC FROM CURRENT FORCES AND MOMENTS AQTING ON 1T

6.000 C

7.000 C NOTES:

8.000 C

9.000 C a) Velocity damping operates on all degrees of freedom

10.000 C

11.000 COMMON JARAY/ A{108910)

12.000 COMMON /BDAT/ R{50),DENS(50),AKN(50},AKS(50),AMU(50),COH(50), AMASS(H0}, AMOI{L0)
13.000 GLOBAL CON1,CON2,GRAVX,GRAVY, TDEL,ADDX,ADDT,RFLAG
14.000 DATA SMALL/1.0E-20/

15.000 C

16.000 LOGICAL RFLAG

17.000 RFLAG=.FALSE.

18.000 C

19.000 C*****GET DISC TYPE NUMBER, MASS AND MOMENT OF INERTIA
20.000 C

21.000 ITYP=A(IAB+9)

22.000 AM=AMASS(ITYP)

23.000 AMI=AMOI(ITYP)

24.000 C

25.000 C*****INTEGRATE ACCELERATIONS TO GIVE NEW VELOCITIES
26.000 C AT END OF TIME STEP (TDEL)

27.000 C
28.000 A(IAB+2)=(A(IAB+2)*CON1+(A(IAB+5)})/AM+GRAVX)*TDEL})*CON2
29.000 A(IAB+3)=(A(IAB+3)*CON1+(A(IAB+6)/AM+GRAVY)*TDEL)*CON2

30.000 A(JAB+4)=(A(IAB+4)*CON1+A(IAB+7)*TDEL/AMI}*CON2
31.000 A(IAB+5)=0.0

32.000 A(IAB+6)=0.0
33.000 A(IAB+7)=0.0
34.000 C

35.000 C*¥*****INTEGRATE VELOCITIES TO GIVE CHANGE IN COORDINATES AND
36.000 C PARTICLE ROTATION

37.000 C 5
38.000 A(IAB+11)=A(IAB+11)+A(IAB+2)*TDEL .
39.000 A(IAB+12)=A(IAB+12)+A(IAB+3)*TDEL :
40.000 A{IAB+13)=A(IAB+13)+A(IAB+4)*TDEL

41.000 IF (ABS{A(IAB+11))-ADDX) 1010,1000,1000
42.000 1000 A(IAB)=A(IAB)+A(IAB+11)

43.000 A(IAB+11)=0.0

44.000 RFLAG=.TRUE.

45.000 1010 IF (ABS(A(IAB+12))-ADDX) 1030,1020,1020
46.000 1020 A(IAB+1)=A(IAB+1}+A(IAB+12)

47.000 A(JAB+12)=0.0

48.000 RFLAG=.TRUE.

49.000 1030 IF (ABS{A(IAD+13)}}-ADDT) 1050,1040,1040
50.000 1040 A(JAB+10)=A(IAB+10)-L A(IAB+13)

51.000 A(IAB+13)=0.0

52.000 C

53.000 C*****PROTECT AGAINST UNDERFLOW ERROR
54.000 C

55.000 1050 CONTINUE
§6.000 1060 IF (ABS(A(IAB+2)).LT.SMALLY A{JTABF2) w0

57.000 IF (ABS(A(JAB+3)).LT.SMALL) A(JA1} £3)=th0
58.000 IF (ABS(A(IAB+4)).LT.SMALL) A(JTAL £ 4)0.0
59.000 C

60.000 RETURN

61.000 END
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1.000 C

2.000 SUBROUTINE REBOX(IAB)

3.000 C

4.000 C*****PROGRAM REBOXES DISC AND UPDATES COMTAT LTS A% REQUIRED
5.000 C

6.000 C IAB=ADDRESS O DISC

7.000 C NBL=ADDRESS OF POS3SIDBLE COMTAOTING DS

8.000 C

9.000 COMMON [ARAY/ A(108010)

10.000 COMMON /SRCH/ NBYSAV(Z000),NEMAPIBSAV (2000, NDD
11.000 COMMON /BDAT/ R{50)

12.000 GLOBAL NX,NY ,DEL, TOL M}

13.000 C

14.000 X=A(IAB)+A{IADB+11)

15.000 Y=A(IABA 1)+ A(TAB12)

16.000 C

17.000 C*****GHECK FOR DISCS OUT OF ASSEMBLY AREA
18.000 C  COMPILE X STATEMENTS TO ACTIVATE DEBUGGER
19.000 C

20.000 X IF (X.GT.A{2).0R.X.LT.0.0) CALL ERROR(2,IAB)
21.000 X IF (Y.GT.A{3).OR.Y.LT.0.0) CALL ERROR(2,IAB)

22.000 C

23.000 C*****TQO DETERMINE BOXES THAT DISC MAPS INTO (SEARCH RADIUS= RAD+TOL)
24.000 C

25.000 ITYP=A(IAB+9)

26.000 RT=TOL+R{ITYP)

27.000 NXL=IFIX{{X-RT)}/DEL)

28.000 NXU=IFIX({X+RT)/DEL)

29.000 NYL=IFIX{{Y-RT)/DEL)

30.000 NYU=IFIX{(Y+RT)/DEL)

31.000 C

32.000 NBMAP=0
33.000 DO 1000 NYY=NYL,NYU

34.000 DO 1000 NXX=NXL,NXU

35.000 NBMAP=NBMAP+1

36.000 NBSAV(NBMAP)=NYY*NX+NXX+MI1

37.000 C

38.000 C*****CHECK THAT DISC IAB HAS AT LEAST ONE ENTRY IN BOXES NBSAV(NBMAP)
39.000 C

40.000 1000 CALL CHECK(IAB,NBSAV(NBMAP))

41.000 C

42.000 C*****IDENTIFY DISCS IN SCANNED BOXES

43.000 C

44.000 CALL SEARCH

45.000 C

46.000 C*****TEST FOR DISC-DISC CONTACT AND UPDATE CONTACT LIST AS REQUIRED
47.000 C

48.000 DO 1010 1=1,NBB

49.000 NBL=IBSAV(I)

50.000 IF (NBL.EQ.IAB)GOTO 1010

51.000 CALL BTEST(NBL,IAD)

52.000 1010 CONTINUE

53.000 C

54.000 RETURN
55.000 END

1.000 C

2.000 SUBROUTINE FORD

3.000 C

4.000 C*****SUBROUTINE COMPUTES FORCES AT ALL CONTACTS USIN(G LINEAR
5.000 C FORCE/DISPLACEMENT LAW AND-—— e

6.000 C CALCULATES ASSEMDBLY STRESS TENSOR FROM CONTRIBUTION
7.000 C OF ALL Fi X Lj TERMS

8.000 C

9.000 C NOTES:

10.000 C

11.000 C a) Damping is viscous and proportionnd Lo stiffncssea
12,000 C and i3 switched off in the aheae divection Jduring aliding
13.000 C b) The stiffnesses of contacting Jdisea are namnned Lo acy
14.000 C in series

15.000 C c) I the 2 dises have ditfevent o or now, the mininam
16.000 C values are taken

17.000 C d) Stiffuess components are Huene

18.000 C

19.000 C IAD= INITIAL ADDRESS UF CONTACGT LixT

20.000 C IBl= ADDRESS FOR DISC DATA ARRAY

21.000 C IB2= ADDRESS FOR CONTACTING DISC DATA ARIAY
22.000 C NBX= BOX ADDRESS FOR CONTACT

23.000 C
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24.000 COMMON [ARAY/ A(108910)

25.000 COMMON /BDAT/ R{50),DENS(5L0), AKM{50), AKE[L0) AMU{L0). COH{50), AMASS(50),AMOIL{50)
26.000 COMMON /BBAL/ BBALL{1000) N3 ARA
27.000 COMMON /BSTR/ BSIG(2,%)
28.000 GLOBAL NCBOX M3, TRDEL RDT,TOL MODE ML NIOY
29.000 DATA SUMIL/0./ SUM1I2/0./ BUNMZ1/0./ sUs2/i/ ;
30.000 C
31.000 DO 1320 NBX =M1 NBOX +M1-1
32.000 IAD=A(NDBX)
33.000 1000 IB1=A(IAD)
34.000 IF (IB1) 1320,1320,1010
35.000 1010  IB2=A(IAD-1)
36.000 C
37.000 XDIF=A(IB1}4-A(IB1+11)-A(IB2)}-A(IB2+11)
38.000 YDIF=A(IB1+1)+A({IB1412)-A(IB241)-A (IB2+12)
39.000 D=SQRT(XDIF*XDIF+YDIF*YDIF)
40.000 C
41.000 C*****GET DISC RADII
42.000 C
43.000 ITYP2=A(IB2+9)
44.000 ITYP1=A(ID1+9)
45.000 R1=R(ITYP1)
46.000 R2=R(ITYP2)
47.000 C
48.000 C*****TEST FOR CONTACT
49.000 C
50.000 RDIF=D-R1-R2
51.000 IF (RDIF) 1020,1140,1140
52.000 C .
53.000 C*****SIN AND COS OF ANGLE BETWEEN 2 DISCS
54.000 C
55.000 1020 SA=YDIF/D
56.000 CA=XDIF/D
57.000 C
58.000 C*****NORMAL AND SHEAR DISPLACEMENT INCREMENTS
59.000 C
G0.000 XDR=A(IB2+2)-A(IB1+2)
G1.000 YDR=A(IB2+3)-A(IB1+3)
62.000 DN=(XDR*CA+YDR*SA)*TDEL
G3.000 DS=(XDR*SA-YDR*CA-A(IB2+4)*R2-A(IB1+4)*R1)*TDEL
64.000 C
65.000 C*****NEW NORMAL DISPLACEMENT
66.000 C
G7.000 1030  A(IAD+2)=A(IAD+2)+DN
68.000 C
69.000 C*****COMDBINED NORMAL STIFFNESS
70.000 C
71.000 STIFN=AKN(ITYP1)*AKN(ITYP2)/(AKN(ITYP1)+AKN(ITYP2))
72.000 C
73.000 C*****NORMAL FORCE
74.000 C
75.000 DFN=DN*STIFN
76.000 FN=A(IAD+4)+DFN
77.000 A(IAD+4)=FN
78.000 IF (FN) 1140,1140,1040
79.000 C
80.000 C*****DAMPING CONTRIBUTION
81.000 C
82,000 1040 FNT=FN+DFN*BDT
83.000 C
© 84.000 C*****COMBINED SHEAR. STIFFNESS
85.000 C
86.000 F8T=0.
87.000 IF (AKS(ITYP1)+AKS{ITYP2)) 1110,1110,1050
88.000 1050  STIFS=AKS(ITYP1)*AKS(ITYP2)/(AKS(ITYP1)+AKS(ITYDZ))
89.000 C
90.000 C*****SHEAR FORCE
91.000 C
92.000 DFS=DS*STIFs
93.000 FS=A(IAD+5)+DFS
94.000 C
95.000 C*****SLIDING TEST
96.000 C
97.000 FSMAX=AMINL(CON(ITY 1), CoN(ITY P24 AMINIAMU{ITY PO AMTITY )
98.000 1 *FN
99.000 IF {ABS(FS)-FSMAX) 1090,1000 10%0
100.000 C
101.000 C*****MUST BE SLIDING
102.000 C

103.000 1060  IF (FS) 1070,1080,1070
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104.000 1070 FS=SIGN(FSMAX.F's)
105.000 1080 FST=FS

106.000 C \
107.000 C*****CUMULATIVE SLIDING DIMPLACEMENT

108.000 C -
109.000 A(IAD+43)=A(IAD 43+ A DI(155) -
110.000 GOTO 1100

111.000 C

112.000 C*****NOT SLIDING INCLITDIE DARPING

113.000 C

114.000 1090 FST=ES+4DFS*BDLT
115.000 1100 A(IAD45)=F%

116.000 C

117.000 C*****RESOLVE FORCES DACE (170 X, ¥, THETA COMPONENTS
118.000 C

119.000 1110 FX=FNT*CGA HFw*

120.000 FY=FNT*SA-FST* A

121.000 FT1=FS8T*R2

122.000 FT2=FST*R1

123.000 C

124.000 C*****ADD IN THIS GONTACTS o ITION TO DISC FORCE SUMS
125.000 C

126.000 A{IB2-+5) = A (ID24-0)F K

127.000 A(IB246)=A (IB240)-F Y

128.000 A(IB2+7)=A(IB247)4P5L

129.000 A(IBL4+5)=A[IB145)4 %

130.000 A(IB146)=A{IB14i)1FY

131.000 A(IB147)=A(IB147)+F T2

132.000 C

133.000 C*****CONTRIBUTION OF ALL ¢3¢3
134.000 C FOR ENTIRE ASSEMDLY
135.000 C (DO NOT INCLUDE CONTACGT [ILTW BE

FHOUADARY STRESS TENSOR

EOTW L TUNDARY DISCOS)

136.000 C

137.000 IF (MODE.EQ.1)GOTO 1310
138.000 C

139.000 ITAG1=A(IB1+8)

140.000 ITAG2=A(IB2+8)

141.000 L=ITAG1+ITAG2+1
142.000 GO TO(1130,1120,1310)L
143.000 G

144.000 1120 D=ITAG1*R2+ITAG2*R1
145.000 1130  SUM11=SUMI11-FX*CA*D

146.000 SUM12=SUM12-FY*CA*D
147.000 SUM21=SUM21-FX*SA*D
148.000 SUM22=SUM22-FY*SA*D
149.000 GOTO 1310

150.000 C

151.000 C*****T0O DEAL WITH NON-TOUCHING DISCS
162.000 C (DELETE CONTACT IF GAP.GT.TOL)
163.000 C

154.000 1140 DO 1150 I=3,6

155.000 1150 A(IAD+I-1)=0.0

156.000 IF (RDIF-TOL) 1310,1160,1160
157.000 1160  ICEND=A(NBX)+NCBOX*6-1
158.000 DO 1170 IAB=IAD,ICEND-6
159.000 1170 A(IAB)=A(IAB+6)

160.000 DO 1180 IAB=ICEND-5,ICEND
161.000 1180  A(IAB)=0.

162.000 C

. 163.000 C****CHECK THAT THERE IS AT LEAST ONE ENTRY FOR DIxHix
164.000 C IB1 AND IB2 IN BOX NBX

165.000 C

166.000 IRET=1
167.000 IAB=IB1
168.000 GOTO 1200
169.000 1190 IRET=2
170.000 IAB=IB2

171.000 1200  IAD=A(NBX)

172.000 1210  NB1=A(IAD)

173.000 IF (NB1) 1250,1290,1220
174.000 1220  IF (NB1-IAB) 1230,1300,1230
175.000 1230  NB2=A(IAD+1)

176.000 IF (NB2-IAB) 1240,1300,1240
177.000 1240 IAD=IAD+6

178.000 GOTO 1210

179.000 C

180.000 1250 NB1=-NB1

181.000 1260  IF (NB1-IAB) 1270,1300,1270
182.000 1270  IAD=IAD+1

183.000 NB1=A(IAD)
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184.000 IF (NB1) 1260,1280,1260

185.000 C
186.000 1280  A{IAD)=IAD
187.000 GO TO(1190,1000) IRET

188.000 1290  A(IAD)=-IAB
189.000 1300 GO TO{1190,1000) IRET

190.000 C

191.000 1310 IAD=IAD+6

192.000 GOTO 1000

193.000 1320 CONTINUE

194.000 C

195.000 BSIG(1,1)=SUMI1/AREA

196.000 BSIG(1,2)=8UM12/AREA

197.000 BSIG(2,1)=8UM21/AREA

198.000 BSIG(2,2)=8UM22/AREA

199.000 C

200.000 RETURN

201.000 END

1.000 C

2.000 SUBROUTINE BBOUND2

3.000 C

4.000 C*****Program identifies discs forming convex polygon of
5.000 C near-circular assembly of dises

6.000 C (Search based on previously identified boundary discs)
7.000 C

8.000 DIMENSION X(2},Y(2),NBM(4)

9.000 COMMON /ARAY/ A(108910)

10.000 COMMON /BBAL/ BBALL(IOOO),NB
11.000 COMMON /SRCH/ NBSAV(ZOOO),NBMAP,IBSAV(2000),NBB
12.000 GLOBAL PI,DEL,TOL,NX,NY M1

13.000 DATA SMALL/1.0E-20/ NBMAP/O/

14.000 C

15.000 DO 1040 N=1,NB

16.000 IF (N.EQ.NB) IB2=BBALL(1);GOTO 1000
17.000 IB2=BBALL(N+1)

18.000 1000  IB1=BBALL(N)

19.000 C

20.000 C*****FIND LARGEST AND SMALLEST ADDRESS OF BOX THAT POLYGON
21.000 C SEGMENT (IB1 TO IB2) CAN BE MAPPED INTO (INCLUDING TOL)

22.000 C

23.000 X(1)=A(IB1)+A(IB1+11)

24.000 Y(1)=A(IB1+1)+A(IB14+12)

25.000 X(2)=A(IB2)+A(IB2+11)

26.000 Y(2)=A(IB2+1)+A(IB2+12)

27.000 C

28.000 T=TOL

29.000 K=1

30.000 DO 1020 J=1,2

31.000 DO 1020 I=1,2

32.000 IF (1.LEQ.2) T=-TOL

33.000 XD=X(I)+T

34.000 YD=Y(I)+T

35.000 NXD=IFIX(XD/DEL)

36.000 NYD=IFIX(YD/DEL)

37.000 IF (J.EQ.2)GOTO 1010

38.000 IF (XD.GT.(NX*DEL)} NXD=NXD-1
39.000 IF (YD.GT.(NY*DEL)) NYD=NYD-1
40.000 1010 NBM(K)=NXD+NYD*NX+1
41.000 1020 K=K+1

42.000 NBMAX=AMAXO(NBM(1),NBM(2))
43.000 NBMIN=AMINO(NDBM(3),NBM(4))
44.000 C

45.000 C*****DETERMINE NUMBER OF COLUMNS OF BOXES THAT I'OLYGON SECMENT
46.000 C MAPS INTO

47.000 C

48.000 IRMAX=(NBMAX-1)/NX+1

49.000 ICMAX=NDBMAX-NX*{IRMAX-1)

50.000 IRMIN=(NDBMIN-1)/NX+1

51.000 ICMIN=NBMIN-NX*{IRMIN-1)

52.000 ICI=AMINO{1CMA X, ICMIN)

53.000 IC2=AMAXMICMAX ICMIN)

54.000 NC=IC2-ICI-+1

55.000 C

56.000 C*****IDENTIFY RECTANGLE OF Lo s TIAT POLY CON HEQMENT MADS INTO

57.000 C AND ADD TO TOTAL BOXES TO L SHARCHED FOR PO 1LBLE

58.000 C BOUNDARY DISCS

59.000 C i
60.000 DO 1030 I=NBMIN ,NDMAX-N¢ 1, NX 0
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61.000
62,000
63.000

DO 1030 J=1,NC
NBX=I+J-2+M1
NBMAP=NBMAT 1

64.000 1030 NBSAV(NBMAP)==NDIX

65.000 1040 CONTINUE

66.000 C

67.000 CALL SEARCH

68.000 C

69.000 C*****FIND LOWEST DISC IN ASSEMULY (aldress=1DFPET)
70.000 C

71.000 Y 0=10000.

72.000 BBALL(2)=0.

73.000 DO 1050 I=1,NBB

74.000 IAB=IBSAV(I)

75.000 A(IAB+8)=0.0

76.000 YY=A(IAB+1)+A(IAB+12)

77.000 IF (YY.LT.YO) IBLST=IAB;XO=A(IAB)}+A(JAB+11);YO=A(TAB+ 1)+ A (TAD +13)
78.000 1050 CONTINUE

79.000 BBALL(1)=IBFST=IBLST

80.000 A(IBFST+8)=1.0

81.000 C

82.000 C*****FIND SEQUENCE OF BOUNDARY DISCS BY CONSIDERING

83.000 C  MINIMUM CHANGE IN ANGLE BETWEEN LINES CONNECTING
84.000 C  CENTRES OF DISCS

85.000 C

86.000 NB=1

87.000 BETO=0.0

88.000 1060 ALPMIN=2*PI

89.000 DO 1080 I=1,NBB

90.000 IAB=IBSAV(I)

91.000 IF (IAB.EQ.IBLST)}GOTO 1080
92.000 DX=A{IAB)+A(IAB+11)-XO
93.000 DY=A(IAB+1)+A(IAB+12)-YO
94.000 IF (ABS(DX).LT.SMALL) BET=SIGN(PI/2.,DY);GOTO 1070
95.000 BET=ATAN2(DY,DX)

96.000 1070  IF (BET.LE.0.0) BET=2*PI+BET
97.000 ALP=BET-BETO

98.000 IF (ALP.LT.0.0)GOTO 1080

99.000 IF {ALP.GT.ALPMIN)GOTO 1080
100.000 IBMIN=IAB

101.000 ALPMIN=ALP

102.000 BETMIN=BET

103.000 1080 CONTINUE

104.000 C

105.000 IF (IBMIN.EQ.IBFST) RETURN
106.000 IF (IBMIN.EQ.BBALL(2)) RETURN
107.000 NB=NDB+1

108.000 XO=A(IBMIN)+A (IBMIN+11)
109.000 YO=A(IBMIN+1)+A(IBMIN+12)
110.000 BBALL(NB)=IBLST=IBMIN
111.000 A(IBMIN+8)=1.0

112.000 BETO=BETMIN

113.000 GOTO 1060

114.000 C

115.000 END

1.000 C

2.000 SUBROUTINE RELAX

3.000 C

4.000 C*****PROGRAM FREEZES BOUNDARY DISCS FOR MAX #CYC=NRLUYG OR URTH,

5.000 C HORIZ. AND VERTICAL INERTIAL BOUNDARY STRESSES ARRE
6.000 C LESS THAN 5 PERCENT OF TOTAL BOUNDARY STRESSES

7.000 C

8.000 COMMON /ARAY/ A(108910)

9.000 COMMON /BBAL/ BBALL(1()00),NB,ARE/\

10.000 COMMON /BSTR/ BSIG(2,2)

11.000 GLOBAL NR,PI,ALPIA

12.000 GLOBAL NRLCYC,M2NBALL RFLACG,GONLCONZ, TDEL
13.000 LOGICAL RFLAG

14.000 C

15.000 NCHECK=1

16.000 C

17.000 C*****INCREASE MASS DAMPING BY FACTOR OF 10 DURING RELAXATION
18.000 C

19.000 CON1I=CON1

20.000 CON2I=CON2

21.000 CON1=1.0-10*ALPHA*TDEL/2.

22.000 CON2=1.0/(1.04+10*ALPHA*TDEL/2.)

23.000 C
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24.000 DO 1060 NR=1,NRLCYC

25.000 SUMIFX=SUMFY=0.0

26.000 C

27.000 C*****CHECK BOUNDARY EVERY 1 CYCLES b
28.000 C

29.000 IF (NR.EQ.NCHECK)GOTO 100t
30.000 GOTO 1010

31.000 1000 CALL BBOUND2

32.000 NCHECK=NCHECK+ 10

33.000 C

34.000 C*****ZERO BOUNDARY X-¥ VELOCITIES AND FORCES
35.000 C

36.000 1010 DO 1020 1=1,ND

37.000 IAB=BBALL(I)

38.000 A(IAB-+5)=0,0

39.000 A{IAB+6}=0.0

40.000 A(IAB3)=0.0

41,000 1020  A(IAB2)=0.0

42.000 C

43.000 C*****SCAN ALL DIS(3

44.000 C

45.000 IAB=M2

46.000 DO 1030 1==1,NBALL

47.000 IF (A(JABA8). QL OO )i
48.000 RFLAG=.FALSIL.

49.000 C

50.000 C*****DETERMINE QUT-OF-BALANMOE 26 IR OMPONENTS
51.000 C

52.000 SUMFX=SUMFX-+A(IAD+5)
53.000 SUMFY=SUMFY-+A(IAB+6)
54.000 C

55.000 CALL MOTION(IAB)

56.000 IF (RFLAG) CALL REBOX(IAl1)
57.000 1030 IAB=IADB+14

58.000 C

59.000 C*****SCAN ALL CONTACTS

60.000 C

61.000 CALL FORD

62.000 C

63.000 C*****CHECK INERTIAL STRESS CRITERION
64.000 C  (COARSE CHECK)

65.000 C

66.000 DIA=SQRT(4*AREA/PI)

67.000 SIGMAX=ABS(SUMFX/DIA)

68.000 SIGMAY =ABS{SUMFY /DIA)

69.000 IF ((20*SIGMAX).GT.ABS({BSIG(1,1)))GOTO 1060
70.000 IF ((20*SIGMAY).GT.ABS(BSIG(2,2)))GOTO 1060
71.000 C

72.000 C (EXACT CHECK)

73.000 C

74.000 SUMFX=SUMFY=0.

75.000 1AB=M2

76.000 DO 1050 I=1,NBALL

77.000 ITAG=A(IAB+8)

78.000 IF (ITAG-1) 1040,1050,1040

79.000 1040 SUMFX=SUMFX+A (IAB+5)

80.000 SUMFY=SUMFY+A({IAB+6)

81.000 1050 CONTINUE

82.000 C

83.000 SIGMAX=ABS(SUMFX/DIA)

84.000 SIGMAY=ABS(SUMFY /DIA)

85.000 IF ({20*SIGMAX).GT.ABS(BSIG(L1,1)))GOTO L0GO
86.000 IF {{20*SIGMAY).GT.ABS(BSIG(2,2))}GOTO 1060
87.000 GOTO 1070

88.000 1060 CONTINUE

89.000 C

90.000 1070 CON1=CON1I

91.000 CON2=CON?2!

92.000 RETURN

93.000 END
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1.000 C

2.000 SUBROUTINE EXTRAGT

3.000 C

4.000 C*****PROGRAM LOADS I5 ALR ABTAY PO INARY FILE
5.000 C E ARRAY CONTAINS MIChiin EATTOAYL BATA BXTRAVTED FIOM DIA
6.000 C ASSEMBLY AND SUDB-A S5 ¢

7.000 C

8.000 COMMON JARAY/ A{1D8D10)

9.000 COMMON /ERAY/ E[16n011)

10.000 COMMON /CHCK/ N A thetnt A ¥

11.000 COMMON /BSTR/ 3%

12.000 COMMON /STRN/ I xm{

13.000 COMMON /CIRC/ IBn OB, NBC, D

14.000 COMMON /BALF/ F> UMAV FIIAVG,MOAVOL YAV
15.000 COMMON /CGONF/ § ANLFS MINF AV FOMAY FOAVL DAY
16.000 COMMON /FAB/ T [ JAADBDAAOBDOENA AT
17.000 *NBB,FNAAO FNI10,A

18.000 COMMON /DBAL/ i

19.000 COMMON [HIST/ NF

20.000 GLODAL M4, N3¢

21.000 GLODBAL NN, YA A REOY O NRNCIRC

22.000 C

23.000 INTECGER EKEY

24.000 REAL MO MOAVE MO

25.000 C

26.000 C*****CYCLE DATA

27.000 C

28.000 B(27)=NN

29.000 E{28)=NN-NCY O3

30.000 C

31.000 C*****CHECK ON CONTADT PA KT

32.000 C

33.000 CALL DISCCHECK

34.000 E(29)=NBMAX

35.000 E(30)=KMAX

36.000 E(31)=NCMAX

37.000 C

38.000 C*****ASSEMBLY BOUNDARY STHA}

39.000 C

40.000 C PDI = MAJOR PRINCIPAL STRAIN 1411
41.000 C PDII= MINOR PRINCIPAL STRAIN 13}
42.000 C EI = MAJOR PRINCIPAL STRAIN
43.000 C EII = MINOR PRINCIPAL STRAIN

44.000 C

45.000 CALL STRAIN{400)

46.000 C

47.000 C*****CURRENT TOTAL STRAIN VALUE:
48.000 C

49.000 EN=EIJB(1,1)+ELJB(2,2)

50.000 ET=SQRT{(EIJB(1,1)-ELIJB(2,2))**2+ (BLID{ 1.2} 4 120207}
51.000 EW=EILIB(2,1}-EIIB(1,2)

52.000 EV=(AREA-AREAI)/AREAI

53.000 PDI=0.5*ATAN2(EIJB{1,2)+EIIB(2,1),BIJD {1, 1) BT 114
54.000 IF (PDI.LT.0.) PDI=PI+PDI

55.000 IF (PDI.GT.PI) PDI=PDI-PI

56.000 PDII=PDI+PI/2.

57.000 IF (PDIL.GT.PI) PDII=PDII-PI

58.000 EI=0.5*(ET+EN)

59.000 EIl=0.5*(EN-ET)

60.000 C

61.000 C*****ASSEMBLY INCREMENTAL STRAINS
62.000 C

63.000 E(350)=EIJB(1,1)-E(50)

64.000 E(351)=EIJB(1,2)-E(51) y
65.000 E(352)=EIJB(2,1)-E(52)

66.000 E(353)=EIJB(2,2)-E(53)

67.000 E(354)=EN-E(54)

68.000 E(355)=ET-E(55)

69.000 E(356)=EW-E(56)

70.000 E(358)=EV-E(58)

71.000 E(359)=PDI-E(59)

72.000 E(360)=PDII-E(60)

73.000 E(375)=EI-E(75)

74.000 E(376)=EII-E(76)

75.000 IF (E(376)) 1000,1010,1000

76.000 1000 E(357)=E(375)/E(376)
77.000 1010 IF (E(355)) 1020,1030,1020
78.000 1020 E(377)=ABS(E(354)/E(355))
79.000 1030 CONTINUE

80.000 C
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81.000 C*****CURRENT TOTAL STRAIN DATA

82.000 G

83.000 E(50)=EIJB(1,1)

84.000 E(51)=EIJB(1,2)

85.000 E(52)=E1IB(2,1)

86.000 E(53)=EIJB(2,2)

87.000 E(54)=EN

88.000 E(55)=ET

89.000 E(56)=EW '
90.000 IF (EII) 1040,1050,1040

91.000 1040 E(57)=EI/EII
92.000 1050 E(58)=EV

93.000 E(59)=PDI

94.000 E(60)=PDII

95.000 E(75)=EI

96.000 E(76)=EII

97.000 IF (ET) 1060,1070,1060

98.000 1060 E(77)=ABS(EN/ET)
99.000 1070 CONTINUE

100.000 C

101.000 C***** A SSEMBLY BOUNDALY HTRIERE DATA

102.000 C

103.000 CALL BBOUND

104.000 CALL BVOLUME

105.000 CALL BSTRESSA

106.000 C

107.000 C*****CURRENT TOTAL STRESS VAL

108.000 C

109.000 SN=(BSIG(L,1)+DBS1CG(2,2})*0.5

110.000 ST=SQRT(.25%((BSIG(1,1) 3 S LIRALGH 1,2) 4+ BSIG(2,1))**2))
111.000 PDI=.5*ATAN2({BSIC(1,2)- B DEI2,2))/2)
112.000 IF (PDLLT.0.) PDI=PI+FDI

113.000 IF (PDLGT.PI) PDI=PDI-FI

114.000 PDII=PDI+PI/2

115.000 IF (PDIL.GT.PI) PDII=PDII-I’]
116.000 SI=SN+ST
117.000 SII=SN-ST

118.000 C

119.000 C*****INCREMENTAL STRESS VALUES
120.000 C

121.000 E(340)=BSIG(1,1)-E(40)

122.000 E(341)=BSIG(1,2)-E(41)

123.000 E(342)=BSIG(2,1)-E(42)

124.000 E(343)=BSIG(2,2)-E(43)

125.000 E(347)=PDIL-E(47)
126.000 E(348)=PDII-E(48)
127.000 E(373)=SI-E(73)

128.000 LE{374)=SII-E(74)

129.000 IF (E(373)) 1080,1090,1080
130.000 1080 E(344)=E(374)/E(373)
131.000 1090 E(345)=SN-E(45)
132.000 E(346)=ST-E(46)

133.000 IF (E(345)) 1100,1110,1100
134.000 1100 E(349)=E(346)/E(345)
135.000 1110 CONTINUE

136.000 C

137.000 C*****CURRENT BOUNDARY STRESSES
138.000 C

139.000 E(40)=BSIG(1,1)

140.000 E(41)=BSIG(1,2)

141.000 E(42)=BSIG(2,1)

142.000 E(43)=BSIG(2,2)

143.000 IF (SI) 1120,1130,1120
144.000 1120 E(44)=SII/SI
145.000 1130 E(45)=SN

146.000 E(46)=ST

147.000 E(47)=PDI1

148.000 E(48)=PDII

149.000 IF (SN) 1140,1150,1140

150.000 1140 E(49)=ABS(ST/SN)
151.000 1150 E(73)=SI
152.000 E(74)=SII

153.000 C

154.000 C*****FABRIC AND FORCE DATA FOR ENTIRI SAMLY
155.000 C NOTE: Disc force/velocity data does not include bonndary Jdises
156.000 C

157.000 C*****LOAD ADDRESSES OF ASSEMBLY DISCH INTO ARRAY IBCIRG(NBT)
158.000 C (Do not include boundary discs)

159.000 C

160.000 1160 NBT=0




161.000 IAB=M2

162.000 DO 1170 I=1,NBALL

1G63.000 NBT=NBT+1

1G4.000 IBCIRC(NBT):IA]’}

165.000 1170 IAB=IAB+14

1G66.000 C

167.000 C*****LOAD ADDRESSES OF AN
168.000 C (Do not include contacly hetwer
169.000 C (Consider only atressed contaria)
170.000 C NBC= total number of contnets
171.000 C NCS= total number of PHY
172.000 C

173.000 NCS=NBC=0

174.000 1IAD=M4

175.000 DO 1250 I=1,NBOX

176G.000 IAB=IAD

177.000 1180  IB1=A(IAB)

178.000 IF (IB1) 1250,1250,1100
179.000 1190  FN=A(IAB-+4)

180.000 IF (FN) 1240,1240,1200
181.000 1200 IB2=A(IAB-+1)

182.000 ITAG1=A(IB1+38)

183.000 ITAG2=A{IB24-8)

184.000 L=ITAG14ITAGZ {1

185.000 GO TO (1220,1210,1240)1%
18G6.000 1210 NBC=NBC+1

187.000 GOTO 1230

188.000 1220
189.000 1230

NBC=NDC+2
NCS=NGCS54-1

190.000 ICONT(NCS)uIATY
191.000 1240 IAB=IADB+0
192.000 GOTO 1180

193.000 1250 [AD=IAD4NCDBOR*¢
194.000 C
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195.000 CALL DISCNUS
196.000 GCALL NPDISC
197.000 C

198.000 E(GL)=NDT

199.000 E(80)=NDBC

200.000 E(81)=NB

201.000 E(82)=FLOAT{NBC)/(HBALL.
202.000 E(83)=AREA
203.000 E(84)=DNSTY
204.000 E(85)=NCS*2/AREA
205.000 C

206.000 CALL FORCE
207.000 CALL MICROTFTEATUL LS
208.000 C

209.000 E(86)=FX

210.000 E(87)=FY

211.000 E(88)=MO

212.000 E(89})=FBMAX
213.000 E(90)=MOMAX
214.000 E{91)=VBMAX
215.000 E(92)=FBAVG
216.000 E(93)=MOAVG
217.000 E{94}=VBAVG
218.000 E(95)=FNMAX
219.000 E(96)=FNAVG
220.000 E{97)=FSMAX
221.000 E(98)=FSAVG
222.000 E(99)=FCMAX
223.000 E(100)=FCAVG
224.000 E(101)=FNMIN
225.000 E(102)=FSMIN
226.000 E(103)=NR

227.000 E(104)=DAVG
228.000 C

229.000 C*****CONTACT ORIENTATION HLATHIBUTION FUNCTION PARAMETERS
230.000 C

231.000 E(105)=AA

232.000 E{106)=BB

233.000 E(107)=AA0

234.000 E(108)=BB0

235.000 C

236.000 C*****AVERAGE NORMAL FONCE
237.000 C

238.000 E(109)=FNAA
239.000 E(110)=FNBB
240.000 E(111)=FNAAO




241.000 E(112)=FNBBO0

242.000 C

243.000 C*****AVERAGE SHEAR FORCE DISTIOILUTIGN FHHCTION PARAMETERS
244.000 C

245.000 E(113)=AU

246.000 E(114)=AW

247.000 E{116)=FSAAO

248.000 C

249.000 C*****AVERAGE CONTACT LENGTH 11 Pries FUNOTION PARAMBETERS
250.000 C

251.000 E(118)=DAA

252.000 E(119)=DBB

253.000 E(120)=DAAO

254.000 E(121)=DBBO

255.000 C

256.000 C*****HISTOGRAM OF CONTACT ORIBHTAT 55
257.000 C

258.000 1AB=130

259.000 DO 1260 1=1,36

260.000 E(IAB)=NCI(I)

261.000 1260 IAB=IAB+1

262.000 C

263.000 C*****HISTOGRAM OF AVERAGE NOHRMAL yiridp: OB TENTATION
264.000 C

265.000 DO 1270 1=1,36

266.000 E(IAB)=FNA(I)

267.000 1270 IAB=IAB+1

268.000 C

269.000 C*****HISTOGRAM OF AVERAGE SHEAL POl
270.000 C

271.000 DO 1280 1=1,36

272.000 E(IAB)=FSA(I)

273.000 1280 [AB=IAB+1

274.000 C

275.000 C*****HISTOGRAM OF AVERAGE CONTAQT LEHGTYH
276.000 C

277.000 DO 1290 1=1,36

278.000 E(IAB)=DCA(I)

279.000 1290 JAB=IAB+1

280.000 C

281.000 C*****HISTOGRAM OF NORMAL FORCES
282.000 C

283.000 DO 1300 1=1,20

284.000 E(IAB)=NFN(I)

285.000 1300 IAB=IAB+1

286.000 C

287.000 C*****HISTOGRAM OF SHEAR FORCES
288.000 C .

289.000 DO 1310 I1=1,20

290.000 E(IAB)=NFS(I)

291.000 1310 IAB=IAB+1

292.000 C

293.000 C*****3UB-ASSEMBLY DATA

204.000 C

295.000 IPOINT=1003

296.000 DO 1570 IC=1,NCIRC

297.000 TAB=4600+IC*400

298.000 C

299.000 CALL CIRCLE(IC)

300.000 CALL BVOLUME2

301.000 CALL DISCDENS

302.000 CALL NPDISC

303.000 C

304.000 C*****SUB-ASSEMBLY BOUNDARY STRESS DDATA
305.000 C

306.000 CALL STRESS

307.000 C

308.000 C*****CURRENT STRESSES

309.000 C

310.000 SN=(BSIG(1,1}+BSIG(2,2))*0.5

311.000 ST=SQRT(.25%((BSIG(1,1)-BSIG(2,2))* "2+ (T1:T02{1,2) 4 BSIG(2,1))**2))
312.000 PDI=0.5*ATANZ2((BSIG(1,2)+BSIC(2,1)) /2 Al ),1)-B1G(2,2))/2.)
313.000 IF (PDI.LT.0.0) PDI=PDI+PI

314.000 IF (PDI.GT.PI) FDI=PDI-PI

315.000 PDII=PDI+PI/2

316.000 IF (PDILGT.PI) PDII=PDIL-I

317.000 SI=SN+ST

318.000 SII=SN-ST

319.000 C

320.000 C*****INCREMENTAL STRESSES




321.000 C
322.000
323,000
324.000
325.000
326.000
327.000
328.000
329.000 1320
330.000 1330
331.000
332.000
333.000 1340
334.000 1350
335.000
336.000 C

E(IAB+300)=BSIG(1,1)-E(IAB)
E(IAB+301)=BSIG(1,2)-E(IAB+1)
E(1AB+302)=BSIG(2,1)-E(IAB+2)
E(IAB+303)=BSIG(2,2)-E(IAB+3)
E(IAB+305)=SN-E(IAB+5)
E(IAB+306)=ST-E(IAB+6)

IF (E(IAB+305)) 1320,1330,1320
E(IAB+309)=E(IAB+306)/E(IAB+305)
E(IAB+333)=SI-E(IAB+33)

E(IAB+334)=SII-E(IAB+34)

IF (E(IAB+333)) 1340,1350,1340
E(IAB+304)=E(IAB+334)/E(1AB+333)
E(IAB+307)=PDI-E(IAB+7)

E(IAB+308)=PDII-E(IAB+8)

337.000 C*****CURRENT STRESS DATA

338.000 C
339.000
340.000
341.000
342,000
343.000
344.000
345.000
346.000
347.000 1360
348.000 1370
349.000 1380
350.000 1390
351.000 1400
352.000
353.000
354.000 C

E(IAB)=BSIG(1,1)
E(IAB+1)=BSIG(1,2)
E(IAB+2)=BSIG(2,1)
E(IAB+3)=BSIG(2,2)
E(IAB+5)=SN
E(IAB+6)=ST
E(IAB+7)=PDI
E{IAB+8)=PDII

IF (SN) 1370,1380,1370

E(IAB+9)=ST/SN

IF (SI) 1390,1400,1390

E(IAB+4)=SII/SI

CONTINUE
E(IAB+33)=SI
E(IAB+34)=SII

355.000 C*****SUB-ASSEMBLY BOUNDARY STRAINS

356.000 C
357.000 1410
358.000
359.000 C

CONTINUE
CALL STRAINZ2

360.000 C*****CURRENT STRAINS

361.000 C
362.000
363.000
364.000
365.000
366.000
367.000
368.000
369.000
370.000
371.000
372.000
373.000 C

EN=EIJB(1,1)+EIJB(2,2)
ET=SQRT((EIJB(1,1}-EIJB(2,2))**2+(EIJB{1.2) + Bl 1{i{2, 5 5}
EI=0.5%*(EN+ET)

EIlI=0.5*(EN-ET}

EW=EIJB(2,1)-E1JB(1,2)
EV=(AREA-AREAI)/AREAI

PDI=0.5* ATAN2{EIJB(1,2)+E1JB(2,1),ELIB{1,1)-E1 7%
IF (PDI.LT.0.) PDI=PI+PDI

IF (PDL.GT.PI) PDI=PDI-PI

PDII=PDI+PI/2.

IF (PDIL.GT.PI) PDII=PDII-PI

374.000 C*****INCREMENTAL STRAINS

375.000 C
376.000
377.000
378.000
379.000
380.000
381.000
382.000
383.000
384.000
385.000
386.000 1420
387.000 1430
388.000
389.000
390.000 1440
391.000 1450
392.000 C

E(IAB+310)=EIJB(1,1)-E(IAB+10)

E(IAB+311)=EIJB(1,2)-E(IAB+11)

E(IAB+312)=EIJB(2,1)-E(IAB+12)

E(IAB+313)=EIJB(2,2)-E(IAB+13)

E(IAB+314)=EN-E(IAB+14)

E(IAB+315)=ET-E(IAB+15)

E(IAB+316)=EW-E(IAB+16)

E(IAB+335)=EI-E(IAB+35)

E(IAB+336)=EII-E(IAB+36)

IF' (E(IAB+315)) 1420,1430,1420
E(IAB+337)=ABS(E(1AB+314)/E(IAB+315))
E(IAB+319)=PDI-E(IAB+19)

E(IAB+320)=PDII-E(IAB+20)

IF (E(IAB+336)) 1440,1450,1440
E(IAB+317)=E(IAB+335)/E(IAB+336)
E(IAB+318)=EV-E(IAB+18)

393.000 C*****LOAD CURRENT STRAINS

394.000 C
395.000
396.000
397.000
398.000
399.000
400.000

E(IAB+10)=EIJB(1
E(IAB+11)=EIJB(1
E(IAB+12)=EIJB(2
E(IAB+13)=EIJB(2
E(IAB+14)=EN
E(IAB+15)=ET
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401.000 E(IAB+16)=EW

402.000 E(IAB+18)=EV

403.000 IF (EII) 1460,1470,1460
404.000 1460  E(IAB+17)=EI/EII
405.000 1470  E(IAB+10)=PDI

406.000 E(IAB+20)=PDII

407.000 IF (ET) 1480,1400,1480
408.000 1480  E(IAB437)=ABS(EN/ET)
400.000 1400  E(IAB+35)=EI

410.000 E(IAB+36)=EII
411.000 IPOINT=IPOINT 54 M 15
412.000 C

413.000 C*****FADBRIC AND FORUE DATA £
414.000 C

¥ OAHLEAS

415.000 E(IAB+21)=NDT

416.000 0 3

417.000

418.000

419.000 (1M3+u, ‘le (N,m )/ (M- u[ NPT
420.000 1500  B(IAB+43)=PI"ROCR{ICI RGR{TL)
421.000 B(IAB+44)=DNSTY
422,000 E(IAB+45)=NCS*2/AREA
423.000 C

424.000 CALL FORCE

425.000 CALL MICROFEATURES
426.000 C

427.000 E(IAB+46)=FX

428.000 E(IAB+47)=FY

429.000 E(IAB+48)=MO

430.000 E(IAB+49)=FBMAX
431.000 E(IAB+50)=MOMAX
432.000 E(IAB+51)=VBMAX
433.000 E(IAB+52)=FBAVG
434.000 E(IAB+53)=MOAVG
435.000 E(IAB+54)=VBAVG
436.000 E(IAB+55)=FNMAX
437.000 E(IAB+56)=FNAVG
438.000 E(IAB+57)=FSMAX
439.000 E(IAB+58)=FSAVG
440.000 E{IAB+59)=FCMAX
441.000 E(IAB+60)=FCAVG
442.000 E(IAB+61)=FNMIN
443.000 E(IAB+62)= I"SMIN
444.000 E(IAB+63)=

445.000 E(IAB+64)= DAVG
446.000 C

447.000 C*****CONTACT ORIENTATION DISTRIBUTION FUNGCT[ON 1
448.000 C

449.000 E(IAB+G5)=AA
450.000 E(IAB+66)=BB
451.000 E(IAB+67)=AA0
452.000 E(IAB+68)=BB0
453.000 C
454.000 C***** AVERAGE NORMAL FORCE DISTRIBUTON FUNGTION A &
455.000 G
456.000 E(IAB+69)=FNAA
457.000 E(IAB+70)=FNBB
458.000 E(IAB+71)=FNAAO
. 459.000 E(IAB+72)=FNBBO
460.000 C

461.000 C*****AVERAGE SHEAR FORCE DISTRIBUTION FUNCTION A5
462.000 C

463.000 E(IAB+73)=AU

464.000 E(IAB474)=AW

465.000 E(IAB+76)=FSA A0

466.000 C

467.000 C***** AVERAGE CONTACT LENGTH DISTRIBUTION FUNC L sk 45 A
468.000 C

469.000 E(IAB+78)=DAA

470.000 E(IAB479)=DBB

471.000 E(IAB+80)=DAAO

472.000 E(IAB+81)=DBBO

473.000 G

474.000 C*****HISTOGRAM OF CONTACT ORIENTATIONS
475.000 C

476.000 IAB=IAB+90

477.000 DO 1510 1=1,36

478.000 E(IAB)=NCI(I)

479.000 1510 IAB=IAB+1

480.000 C
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481.000 C*****HISTOGRAM OF AVERACE NORMAL FORSES WRT ORIENTATION
482.000 C

483.000 DO 1520 I=1,36

484.000 E{IAB)=FNA({I)

485.000 1520 IAB=IAB+1

486.000 C

487.000 C*¥****HISTOGRAM OF AVERACE SIHEAG FOCES WRT OUIENTATION
488.000 C

489.000 DO 1530 I=1,36

490.000 E(IAB)=FSA(l)

491.000 1530 IAB=IADB-1

492.000 C
493.000 C*****HISTOGRAM OF AVERAGE COMNTAUT LENGTH WRT ORIENTATION
494,000 C

495.000 DO 1540 11,30

496.000 E(JAB)=DCAL)

497.000 1540  IAB=IAD1

498.000 C

499.000 C*****HISTOGRAM OF NORMAL FORCES
500.000 C

501.000 DO 1550 121,20

502.000 E(IAB)=NFN(I)

503.000 1550  IAB=IADR1

504.000 C

505.000 C*****HISTOGRAM OF SHEAR FORCES
506.000 C

507.000 DO 1560 I=1,20

508.000 E(IAB)=NFS(I)

509.000 1560 IAB=IAB+1

510.000 C

511.000 1570 CONTINUE

512.000 C

513.000 C*****DUMP E ARRAY TO BINARY FILE
514.000 C

515.000 WRITE (15, KEY=EKEY,ERR=1580) (E(I),I=1,10000)
516.000 EKEY=EKEY+1000

517.000 C

518.000 1580 DO 1590 1=1,121
519.000 1590 A(I)=E(I)

520.000 C

521.000 RETURN

522.000 END

1.000 C

2.000 SUBROUTINE BNDFORD
3.000C

4.000 C*****PROGRAM APPLIES FORCES TO BOUNDARY DISCS TO GIVE

5.000 C PRESCRIBED BOUNDARY STRESS TENSOR "DBSIi{2,2)"

6.000 C IAB= CURRENT ADDRESS OF BOUNDARY DISC

7.000 C IABL=ADDRESS OF BOUNDARY DISC AT CLOCKWISE LOCATION TO

8.000 C CURRENT BOUNDARY DISC

9.000 C

10.000 COMMON /ARAY/ A(108910)

11.000 COMMON /BDAT/ R(50)

12.000 COMMON /BBAL/ BBALL(1000),NBB

13.000 COMMON /MOD/ EBVEL(2,2),SGAIN,BSTR(2.2)
14.000 LOGICAL BPASS,LGAP

15.000 C

16.000 BPASS=.FALSE.

17.000 C

18.000 C*****APPLY BALANCED FORCES AND MOMENTS T DOUNDARY DIS
19.000 C

20.000 BBALL(NBB+1)=BBALL(1)

21.000 DO 1050 I=1,NBB+1

22.000 LGAP=.FALSE.

23.000 IF (ILEQ.1) IABL=BBALL(NBB);GOTO 1000
24.000 IABL=BBALL(I-1)

25.000 1000 IAB=BBALL(I)

26.000 C

27.000 XDIF=A(IAB)-A(IABL)

28.000 YDIF=A(IAB+1)-A{IABL+1)

29.000 Z=SQRT(XDIF*XDIF+YDIF*YDIF)

30.000 ST=YDIF/Z

31.000 CT=XDIF/Z

32.000 ITYP=A(IAB+9)

33.000 ITYPL=A(IABL+9)

34.000 GAP=Z-R(ITYP)-R(ITYPL)

35.000 GAP2=.5*GAP

36.000 IF (GAP.LE.0.) LGAP=.TRUE;GOTO 1010
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37.000 XP=A(IABL}+R(ITYPL)*GT

38.000 YP=A(IABL+1)+R(ITYPL)*ST
39.000 XQ=A(IAB)-R(ITYP)*CT
40.000 YQ=A(IAB+1)-R{ITYP)*ST
41.000 GOTO 1020
42.000 1010 RG2=R(ITYPL}+GAP2
43.000 XP=A(IABL)+RG2*CT
44.000 YP=A(IABL+1)+RG2*ST
45.000 XQ=XP
46.000 YQ=YP
47.000 C
48.000 1020  IF {BPASS)GOTO 1030
49.000 BPASS=.TRUE.
50.000 GOTO 1040
51.000 C
52.000 C*****INTERIOR BOUNDARY SEGMENT
53.000 C
54,000 1030  XDIF=XP-XPO
55.000 YDIF=YP-YPO
56.000 F1=BSTR(1,1)*YDIF-BSTR(1,2)*XDIF
57.000 F2=BSTR(2,1)*YDIF-BSTR(2,2)*XDIF
58.000 A(IABL+5)=A(IABL+5)+F1
59.000 A(IABL+6)=A(IABL+6)+F2
60.000 XAV=0.5*(XP+XPO)
61.000 YAV=0.5*(YP+YPO)
62.000 A(IABL+7)=A{IABL+7)-F1*(YAV-A(IABL+1))+F2*(3XAV-A{1A L]}
i 63.000 IF (LGAP)GOTO 1040
64.000 C
65.000 C*****BOUNDARY SEGMENT SPANNING DISCS
66.000 C
67.000 XDIF=XQ-XP
68.000 YDIF=YQ-YP
69.000 F1=BSTR(1,1)*YDIF-BSTR(1,2)*XDIF
70.000 F2=BSTR{2,1)*YDIF-BSTR(2,2)*XDIF
71.000 RATL=(R(ITYP)+GAP2)/Z
72.000 RAT=(R(ITYPL)+GAP2)/Z
73.000 A(IABL+5)=A(IABL+5)+F1*RATL
74.000 A(IABL+6)=A(IABL+6)+F2*RATL
75.000 A(IAB+5)=A(IAB+5)+F1*RAT
76.000 A(IAB+6)=A(IAB+6)+F2*RAT
77.000 1040 XPO=XQ
78.000 YPO=YQ
79.000 1050 CONTINUE
80.000 C
81.000 RETURN

82.000 END

1.000 C
2.000 SUBROUTINE ERROR(NO,IAB)
3.000 C
4.000 C*****PROGRAM IDENTIFIES ERROR ASSOCIATED WITH FROUGRANM ¢
5.000 C
6.000 C NO= ERROR NUMBER
7.000 C IAB=BALL ADDRESS
8.000 C
9.000 COMMON /ARAY/ A(108910)
10.000 GLOBAL NN,NR
11.000 C
12.000 C*****OPEN ERROR FILE

i 13.000 C

fiee 14.000 OPEN (20,NAME="ERR",STATUS='NEW' FORM='FORMATTLD)
15.000 GO TO (1000,1010)NO ’
16.000 C
17.000 C*****CONTACT MEMORY PARTITION EXCEEDED
18.000 C
19.000 1000 WRITE (20,9000)
20.000 GOTO 1020
21.000 C
22.000 C*****BALL OUT OF ASSEMBLY AREA
23.000 C
24.000 1010 WRITE (20,9010)
25.000 X=A(IAB)+A(IAB+11)
26.000 Y=A(IAB+1)4+A(IAB+12)
27.000 VX=A(IAB+4)
28.000 VY=A(IAB+5)
29.000 V=SQRT(VX*VX4+VY*VY)
30.000 WRITE (20,9020) IAB
31.000 WRITE (20,9030) X

32.000 WRITE (20,9040} Y




33.000 WRITE (20,9050) Vv

34.000 C

35.000 1020 WRITE (20,9060) NN
36.000 WRITE (20,9070) NI

37.000 C .

38.000 CLOSE (20,STATUS="KEEP")

39.000 STOP

40.000 9000 FORMAT(/,1X,"MEMORY PARTITION LXCREEDED')
41.000 9010 FORMAT(/,1X,/BALL OUT OF ASSEMBLY ARKA')
42.000 9020 FORMAT(IX,'BALL ADDRESS= " 1G)
43.000 9030 FORMAT(1X,"X COORDINATE OF BALLw= ’
44.000 9040 FORMAT(IX,'Y COORDINATE OF BALL
45.000 9050 FORMAT(1X,'BALL VELOCITY @ L E120)

46.000 9060 FORMAT( 1X,'NUMBER OF ACTIVE CYCLES:= "106)
47.000 9070 FORMAT( (X,'NUMBER OF RELAXATION CYCLES== " 16)
48,000 END

1.000 C

2.000 SUBROUTINE CHECK(IAB,NB) F
3.000 C

4.000 C*****PROGRAM CHECKS THAT THERE IS AT LEAST ONE ENTRY FOR DISC 1A .
5.000 C IN CONTACT LIST FOR BOX NB

6.000C IF NOT- ENTRY IS ADDED

7.000 C

8.000 COMMON /ARAY/ A(108910)

9.000 C

10.000 C*****CHECK FOR SINGLE DISC ENTRIES IN BOX NB

11.000 C

12.000 IAD=A(NB)

13.000 1000 IB1=A(IAD)

14.000 IF (IB1) 1020,1050,1010
15.000 1010 IB2=A(IAD+1)

16.000 IF (IB1.EQ.IAB.OR.IB2.EQ.IAB) RETURN
17.000 IAD=IAD+6

18.000 GOTO 1000

19.000 C

20.000 C*****CONTINUE SEARCH IN LIST OF SINGLE DISC ENTRIES
21.000 C

22.000 1020 IB1=-IB1

23.000 1030 IF (IB1.EQ.IAB) RETURN
24.000 IAD=IAD+1

25.000 IB1=A(IAD)

26.000 IF (IB1.EQ.0)GOTO 1040

27.000 GOTO 1030

28.000 C

29.000 C*****ADD NON-CONTACTING DISC ENTRY TO LIST
30.000 C

31.000 1040 A(IAD)=IAB
32.000 RETURN
33.000 1050 A(IAD)=-IAB
34.000 RETURN
35.000 END

1.000 C
2.000 SUBROUTINE SEARCH
3.000 C
4.000 C*****SUBROUTINE IDENTIFIES ADDRESSES OF DISCS

. 5.000 C*****MAPPING INTO BOXES STORED IN ARRAY NBSAV

6,000 C
‘ 7.000 C NBSAV=BOX ADDRESSES
8.000 C NBMAP=NUMBER OF BOXES
9,000 C

IBSAV=ARRAY OF DISC ADDRESSES MAPPING INTO BOXES
10.000 C NDBB= NUMBER OF DISCS IN SCANNED BOXES

11.000 C ITAG;1 (TEMPORARILY IDENTIFIES DISC AS INCLUDED IN ARRKAY
12.000 C IBSAV)

13.000 C COMPILE X STATEMENTS TO ACTIVATE DEBUCGER
14.000 C

15.000 COMMON JARAY/ A{108010)

16.000 COMMON /SRCH/ NBSAV{2000),NDMAP IBSAV(2000), NI
17.000 GLOBAL NCBOX

18.000 C

19.000 NBB=0

20.000 DO 1110 1=1,NBMAP

21.000 IAD=A{NDSAV(I))

22,000 X ICEND=IAD+NCBOX*6-1

23,000 C

24.000 1000 CONTINUE

25.000 X IF (IAD.GT.ICEND) CALL ERILOE(1,0)

26.000 IBl1=A(IAD)
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27.000 IB2=A(IAD+1)

28.000 IF (IB1) 1060,1110,1010
29.000 1010  ITAG=A(IB1+8)

30.000 IF (ITAG-1) 1020,1020,1030
31.000 1020 NBB=NDBD+1

32.000 IBSAV(NBB)=131

33.000 A(IB148)=A(IBL1+45)12
34.000 1030  ITAG=A(IB2+8)

35.000 IF {ITAG-1) 1040,1040, 1050
36.000 1040 NDBB=NBB-+1

37.000 IBSAV(NBD)=IB2

38.000 A(IB2+48)=A(I1B248)1 2
39.000 1050 IAD=IAD+-6

40.000 GOTO 1000

41.000 C

42.000 1060 IF (IB1) 1070,1110, 050
43.000 1070  IB1=-IB1
44.000 1080 ITAG=A(ID1-18)

45.000 IF (ITAG-1) 1090,1090,1 j0u
46.000 1090  NBB=NDDB+1

47.000 IBSAV(NBB)=IB1

48.000 A(IB1+8)=A(IB1-+8)+2

49.000 1100  IAD=IAD-+1

50.000 X IF (IAD.GE.ICEND) CALL ERROR(1,0)
51.000 IB1=A(IAD)

52.000 GOTO 1060

53.000 1110 CONTINUE

54.000 C

55.000 C*****RESET TAGS

§6.000 C

57.000 DO 1120 I=1,NBB

58.000 1120 A(IBSAV(I1)+8)=A(IBSAV(I)+8)-2
§9.000 C

60.000 RETURN

61.000 END

1.000 C

2.000 SUBROUTINE BTEST(IB1,IB2)

3.000 C

4.000 C*****PROGRAM TESTS FOR DISC-DISC CONTACT
5.000 C IF CONTACT EXISTS, BOX CONTACT MAPS INTO I8 DETER MMy
6.000 C AND BOX CONTACT LIST IS UPDATED AS REQUIRED

7.000 C
8.000 COMMON /ARAY/ A(108910)

9.000 COMMON /BDAT/ R(50)

10.000 GLOBAL TOL,M1,DEL,NX

11.000 C

12.000 ITYP1=A(IB1+9}

13.000 ITYP2=A(IB2+9)

14.000 R1=R(ITYP1)

15.000 R2=R(ITYP2)

16.000 X=A(IB2)+A(IB2+11)

17.000 Y=A(IB2+1)+A(IB2+12)

18.000 XDIF=A(IB1}4+A(IB1+11)-X

19.000 YDIF=A(IB1+1)+A(IB1+12)-Y

20.000 D=SQRT(XDIF*XDIF+YDIF*YDIF)

21.000 GAP=D-R1-R2

22.000 TOUCH=GAP-TOL

23.000 IF (TOUCH.GT.0.0) RETURN

24.000 C

25.000 C*****BOX CONTACT MAPS INTO

26.000 C

27.000 RAT=(R2+GAP/2.0)/D

28.000 XC=X+XDIF*RAT

29.000 YC=Y+YDIF*RAT

30.000 NB=IFIX(XC/DEL)+IFIX(Y C/DEL}*NX+M1
31.000 C

32.000 C*****UPDATE CONTACT LIST FOR BOX NB IF REQUIRED
33,000 C

34.000 CALL UPDATE(IB1,IB2,NB)

35.000 C

36.000 RETURN

37.000 END




1.000 C s
2.000 SUBROUTINE DISCCHECK <o
3.000 C

4.000 C*****PROGRAM FINDS BOX CONTACT LIST WITH MAXIMUM USED STORAGE
5.000 C AND MAXIMUM NUMDBER OF CONTACTS/BOX

A

G.000 C

7.000 COMMON /ARAY/ A{108910)

8.000 COMMON /CHGK/ NBMAX KMAX,NCMAX

9.000 GLOBAL NBOX,MLNCBOX

10.000 C

11.000 KMAX=NCMAX=0

12.000 DO 1060 NB=MI[,NDBOX +-M1-1

13.000 KOUNT=0

14.000 IAB=A(NDB) .
15.000 ICEND=IAB+NCBOX*6-1 b d
16.000 1000 CONTINUE :
17.000 NCMAX=AMAXO(NCMAX KOUNT)

18.000 IF (A{IAB)}) 1020,1D50,1010

19.000 1010 KOUNT=KOUNT+1

20.000 IF (IAB.GT.ICEND) ¢ALL ERROR(1,0)

21.000 IAB=IADB-6

22.000 GOTO 1000

23.000 1020 KOUNT=KOUNT*}
24.000 1030 KOUNT=KOUNT+1

25.000 IAB=IAB-1

26.000 IF (A(IAB)) 1050,1060, 1040

27.000 1040  IF (IAB.GT.IGEND) ZALL ERROR(1,0)
28.000 GOTO 1030

29.000 1050 CONTINUE

30.000 IF (KOUNT.GT.KMAX) NDMAX=NDB-M1+1
31.000 KMAX=AMAXO(KOUNT KMAX)

32.000 1060 CONTINUE

33.000 C

34.000 RETURN

35,000 END

1.000 C

2.000 SUBROUTINE STRAIN{IPOINT)

3.000 C

4,000 C*****PROGRAM CALCULATES INCREMENTAL STRAIN TENSOR VALUES
5.000 C (For total and sub-asscmblies)

6.000 C

7.000 COMMON [ARAY/ A(108010)

8.000 COMMON /ERAY/ E(10000)

9.000 COMMON /STRN/ EIJB(2,2), NI, AREAL ]
10.000 COMMON /BBAL/ BBALL(1000), NI3,AREA 1
11.000 REAL MIDX,MIDY,MIDY?2 i
12.000 DATA SUM11/0./ SUM12/0./ SUM21t/0./ 3UUM22/0./ AREA/0./ 1
13.000 C \
14.000 C*****NOTES:

15.000 C it
16.000 C 1) AREAI= initial area formed Iy houndary discs %
17.000 C 2) AREA =  current area formed by SAMIE initial '
18.000 C boundary discs

19.000 G 3} NBI = initial number of boundary discs 1
20.000 C g
-21.000 IAD=IPOINT i
22,000 NBI=E(IAD)

23.000 AREAI=E(IAD+1)

24.000 IAD=IAD+2

25.000 C ]
26.000 DO 1020 I=1,NBI i
27.000 IB1=E{IAD)

28.000 XSI1=E(IAD+1)

29.000 YS1=E(IAD+2)

30.000 XF1=A(IB1)+A(IB1+11) i
31.000 YF1=A(IB1+1)+A(IB1+12)

32.000 IF (.LEQ.NBI)GOTO 1000

33.000 XS2=E(IAD+4)

34.000 YS2=E(IAD+5)

35.000 1B2=E{IAD+3)

36.000 XF2=A(IB2)+A(IB2+11)

37.000 YF2=A(IB2+1)+A(IB2+12)

38.000 GOTO 1010
39.000 1000 IAD=IPOINT+2 i
40.000 XS2=E(IAD+1) L
41.000 YS2=E(IAD+2) B
42.000 IB2=E(IAD
43.000 XF2=A(IB2)+A(IB2+11) o
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44.000 YF2=A(IB2+1)+A(IB2-12)
45.000 1010 CONTINUE

46.000 C
47.000 DX=(XS51-XF1+XF2-X52)
48.000 DY=(YS1-YF1+YF2-Y52)
49.000 MIDX =(XS81+XF1+XF24-X52) /4.
50.000 MIDY=(YS1+YF1+YS24YF2)/4.
51.000 SUM11=SUMI11-DX*MIDY
52.000 SUMI12=SUMI124+DX*MIDX
53.000 SUM21=SUM21-DY*MIDY
54.000 SUM22=8UM22-4+DY *MI3X
55,000 C
56.000 DX2=XF2-XF1
57.000 MIDY2={YF2+YF1)/2.
58.000 PART=-MIDY2+DX2
59.000 AREA=PART+AREA
60.000 C
61.000 1020 IAD=IAD+3
62.000 VOL=(AREA+AREAI)/2.
63.000 EIJB(1,1)=8UM11/VOL
64.000 EIJB(1,2)=SUM12/VOL
65.000 EIJB(2,1)=5UM21/VOL
66.000 EIJB(2,2)=SUM22/VOL
67.000 C
68.000 RETURN
69.000 END

1.000 C

2.000 SUBROUTINE DISCDENS

3.000 C

4.000 C*****PROGRAM CALCULATES DENSITY OF ASSEMBLY OR SUB-ASSEMBLY
5.000 C

6.000 COMMON /ARAY/ A(108910)

7.000 COMMON /BDAT/ R(50

8.000 COMMON /BBAL/ BBALL(1000),NB,AREA
9.000 COMMON /CIRC/ IBCIRC(2000),NBT
10.000 GLOBAL DNSTY,PI

11.000 DATA SUM/o0./

12.000 C

13.000 DO 1020 I=1,NBT

14,000 IAB=IBCIRCG(I)

15.000 ITYP=A(IAB+9)

16.000 RAD=R(ITYP)

17.000 IF (A(IAB+8).EQ.1)GOTO 1000

18.000 GOTO 1010

19.000 1000  SUM=SUM+0.5*PI*RAD*RAD

20.000 GOTO 1020

21.000 1010 SUM=SUM+PI*RAD*RAD
22.000 1020 CONTINUE

23.000 C

24.000 IF (AI‘\'.EA.EQ.0.0) DNSTY=0.0; RETURN
25.000 DNSTY=SUM/AREA

26.000 C

27.000 RETURN

28.000 END

1.000 C

2.000 SUBROUTINE DISCNCTS

3.000 C

4.000 C*****PROGRAM DETERMINES:

5.000 C

G6.000 C 1) No. of PHYSICAL stressed contacts over entire agsembly
7.000 C =NC8

8.000 C (Does not include contacts between two(2) boundary discs)
9.000 C 2) Determines contact addresses of stressed contncts

10.000 C ICONT(NCS)

11.000 C 3) NBC= Coutact number

12.000 C 4) NCS= Number of PHYSICAL contacts

13.000 C

14.000 COMMON /ARAY/ A{108010)

15.000 COMMON /CIRG/ IBCIRCI2000), KT, 1O MY (d00iy, NG N1
16.000 DATA NBG/0/

17.000 C

18.000 N=NCs

19.000 NCS=0

20.000 DO 1020 I=1,N

21.000 IAB=ICONT(I)

22.000 IB1=A(IAB)

23.000 IB2=A(IAD+1)




24.000 FN=ABS(A(IAB+4))

25.000 FS=ABS(A(IAB+5))

26.000 IF (FN+FS) 1020,1020,1000

27.000 1000 IF ({A{IB1+4-8)+A(IB248)).1Q. 20010 T 1020
28.000 IF (A(IB1+8).EQ.1L.OR.A{IB245). 1500 1) NBw M+ LGOTO 1040
29.000 NBC=NBC+2

30.000 1010  NCS=NCS+1

31.000 ICONT(NCS)=IAB

32,000 1020 CONTINUE

33.000 C

34.000 RETURN

35.000 END

1.000 C

2.000 SUBROUTINE NPDISC

3.000 C

4.000 C*****PROGRAM DETERMINES NUMBER OF Dindd Wil ALE UNLOADED
5.000 C {Does not include boundary discs)

6.000 C

7.000 DIMENSION NBSAV(10)

8.000 COMMON fARAY/ A(108910)

9.000 COMMON /BDAT/ R(50)

10.000 COMMON /CIRC/ IBCIRC(2000),NBT JCONT(A0{1) HLE Ml NP D
11.000 GLOBAL DEL,NX,NY,TOL,M1

12.000 DATA NPB/0/

13.000 C

14.000 DO 1090 I=1,NBT

15.000 TAB=IBCIRC(I)

16.000 ITAG=A(IAB+8)

17.000 IF (ITAG-1) 1000,1090,1090

18.000 1000 IBTYP=A(IAB+9)

19.000 RT=R{IBTYP)+TOL

20.000 X=A(IAB)+A(IAB+11)

21.000 Y=A(IAB+1)+A(IAB412)

22.000 C

LAY

23.000 C*****TO DETERMINE BOXES THAT DISC MAPS INTO (SEARCH A
24.000 C

25.000 NXL=IFIX((X-RT)/DEL)

26.000 NXU=IFIX({X+RT)/DEL)

27.000 IF ((X+RT).GT.(NX*DEL)) NXU=NXU-1
28.000 NYL=IFIX((Y-RT)/DEL)

29.000 NYU=IFIX({Y+RT)/DEL)

30.000 IF ((Y+RT).GT.(NY*DEL)) NYU=NYU-1
31.000 C

32.000 NBMAP=0

33.000 DO 1030 NYY=NYL,NYU

34.000 NA=NYY*NX

35.000 DO 1030 NXX=NXL,NXU
36.000 NB=NA+NXX+M1

37.000 IF (NBMAP.EQ.0)GOTO 1020
38.000 DO 1010 N=1,NBMAP

39.000 IF (NBSAV(N).EQ.NB)GOTO 1030
40.000 1010 CONTINUE

41.000 1020 NBMAP=NBMAP+1

42.000 NBSAV(NBMAP)=NB

43.000 1030 CONTINUE

44.000 C

45.000 DO 1080 J=I,NBMAP

46.000 IAD=A(NBSAV(J))

47.000 1040 IB1=A(IAD)

48.000 IF (IB1) 1080,1080,1050

49.000 1050 FN=A(IAD+4)

50.000 IF (FN) 1070,1070,1060

51.000 1060 IF (IB1.EQ.IAB}GOTO 1090
52.000 IB2=A(IAD+1)

53.000 IF (IB2.EQ.IAB)GOTO 1090
54.000 1070 IAD=IAD+6

55.000 GOTO 1040

56.000 1080 CONTINUE

57.000 C

58.000 NPB=NPB+1

59.000 1090 CONTINUE

60.000 C

61.000 RETURN

62.000 END
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1.000 C i

2.000 SUBROUTINE FORCE i

3.000 C

4.000 C*****PROGRAM CALCULATES FOR ENTIRE ASSEMBLY AND SUB-ASSEMBLIES:

5.000 C

6.000 C 1) OUT-OF-BALANCE forces and moments !

7.000 C (FX,FY,MO)

8.000 C 2) Maximum and average dise forces,moments and velocities

9.000 C (FBMAX,FBAVG,M()M/\X,M()AVG,VBMAX,VBAVG]

10.000 C 3) MAX,MIN and AVERAGE normal and shear contact forces

11.000 C (FNMAX,FNMIN.F'SMf\?\',l"SMIN,FNAVG,FSAVG)

12.000 G 4} MAX and AVERAGT resultant contact forces (FCMAX,FCAVG)

13.000 C 5) NORMAL and SHEAR. foree FREQUENCY DISTRIBUTIONS

14.000 C (NTN(20),NFs5({20}) ot

15.000 C 6) Average contaet dength {ie average disc centre to contact

16.000 C distance DAVG)

17.000 C

18.000 COMMON /ARAY/ A(1DED10)

19.000 COMMON /BALF/ FX,FY MO FBMAX MOMAX VBMAX,FBAVG,MOAVG,VBAVG

20.000 COMMON /[CIRC/ IDCIRG(LO00), NBTICONT{4000),NCS,NBC

21.000 GCOMMON JCONF/ FNMAX FNMIN,FNAVG, FSMAX, FSMIN,FSAVG, FCMAX,FCAVG,DAVCG

22.000 GCOMMON [HIST/ NIFN{20),NIF5{20) 3

23.000 COMMON /BDAT/ R[50} :

24.000 REAL MOMOAVGMOMAX MOSUM. MDBO

25.000 C

26.000 C*****INITIALIZATION

27.000 C

28.000 FX=FY=MO=FBMAX=MOMAX=VBMAX=FNMAX=FSMAX=FNSUM=F55UM=MOSUM=0.0

29.000 VBSUM=FBSUM=FCSUM=FCMAX=DAVG=DSUM=0.0

30.000 FNMIN=FSMIN=1.0E+20

31.000 C

32.000 DO 1000 1=1,20

33,000 1000 NFN(I}=NF$(1)=0

34.000 C

35.000 C*¥****QUT-OF-BALANCE DISC FORCES, MOMENT AND VELOCITIES

36.000 C (Do not include boundary discs)

37.000 C

38.000 DO 1010 I=1,NBT

39.000 TAB=IBCIRC(I)

40.000 IF (A(IAB+8).EQ.1)GOTO 1010

41.000 VX=A(IAB+2)

42.000 VY=A(IAB+3)

43.000 FBX=A(IAB+5)

44.000 FBY=A(IAB+6)

45.000 MBO=A(IAB+7)

46.000 FX=FX+FBX

47.000 FY=FY+FBY

43.000 MO=MO+MBO

49.000 VB=SQRT(VX*VX+VY*VY)

50.000 FB:SQRT(FBX*FBX+FBY*FBY)

51.000 VBMAX=AMAXI(VB,VBMAX)

52.000 FBMAX=AMAX1(FB,FBMAX)

53.000 MOMAX=AMAX1{ABS(MBO),MOMAX) i

54.000 MOSUM=MOSUM+ABS(MBO) i

55.000 VBSUM=VBSUM+VB

56.000 1010 FBSUM=FBSUM+FB

57.000 FBAVG=FBSUM/NBT

58.000 VBAVG=VBSUM/NBT

59.000 MOAVG=MOSUM/NBT _

60.000 C %

61.000 C*****MAX ,MIN AND AVERAGE NORMAL,SHEAR AND RESULTANT CONTACT FOROCES €§

62.000 C AVERAGE CONTACT LENGTH

63.000 C {STRESSED CONTACTS ONLY)

64.000 C

65.000 IF (NCS.EQ.0) RETURN

66.000 DO 1040 1=1 NGS i

G7.000 TAB=TCGONT{Y [y

G8.000 KOUNT:=2 i

69.000 FN=A{IAD4)

70.000 FS=ADBSIA{IAL L))

71.000 FC=SQRT(FN*FN PPy :

72.000 FNMAX = AMAXIIFNMAX

73.000 FNMIN=AMINLENMIN, M) t

74.000 FSMAX = AMAM LFHMA Y FS) i

75.000 FSMIN=AMINI| .

76.000 FCMAX=AMAXO([FOMA 1

77.000 ID1I=A(TAD) i

78.000 IB2=A{IAD } 1) |

79.000 ITAGL=A(II}1 5} il

80.000 ITAG2=A(IB2 ¢ 8) &

EX | ¥
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81.000 KOUNT=KOQUNT-ITAGI-ITAG2

82.000 XDIF=A(IB1)+A(IB1+11)-A(IB2)-A(1B2+411)
83.000 YDIF=A(IB1+1)+A(IB1+412)-A(IB241)-A(IB2+12)
84.000 D=SQRT(XDIF*XDIF+YDIF*YDIF)

85.000 FNSUM=FNSUM+FN*KOUNT

86.000 FSSUM=FSSUM+FS*KOUNT

87.000 FCSUM=FCSUM+FC*KOUNT

88.000 L=ITAG14+ITAG2+1

89.000 GO TO (1030,1020,1040)L

90.000 1020  D=ITAGI*R{A(IB2+49})4+ITACIZ RIA{ID140})
91.000 1030 DSUM=DSUM+D
92.000 1040 CONTINUE

93.000 FNAVG=FNSUM/NBC
94.000 FSAVG=FSSUM/NBC
95.000 FCAVG=FCSUM/NBC
96.000 DAVG=DSUM/NBC
97.000 C

98.000 C*****NORMAL AND SHEAR CONTACT FORLE FREQUENGY DISTRIBUTIONS(stressed
99.000 C contacts only and 20 intervals)

100.000 C

101.000 C*****NORMAL FORCE

102.000 C

103.000 RANGE=FNMAX-FNMIN

104.000 STEP=RANGE/20

105.000 DO 1070 I1=1,NCS

106.000 IAB=ICONT(I)

107.000 FN=A(IAB+4)

108.000 KOUNT=2

109.000 IB1=A{IAB)

110.000 IB2=A(IAB+1)

111.000 ITAG1=A(IB148)

112.000 ITAG2=A(IB2+8)

113.000 KOUNT=KOUNT-ITAGI-ITAG2

114.000 1050 START=FNMIN

115.000 DO 1060 J=1,20

116.000 END=START+STEP

117.000 IF (FN.GE.START.AND.FN.LT.END) NFN(J)=NFN (J)+KOUNT;GOTO 1070
118.000 IF (J.EQ.20.AND.FN.EQ.FNMAX) NFN(J)=NFN(J)+KOUNT;GOTO 1070 1

119.000 1060 START=END
120.000 1070 CONTINUE

121.000 C

122.000 C*****SHEAR FORCE

123.000 C

124.000 RANGE=FSMAX-FSMIN

125.000 STEP=RANGE/20

126.000 DO 1100 I=1,NCS

127.000 IAB=ICONT(I)

128.000 FS=ABS(A(IAB+5))

129.000 KOUNT=2

130.000 IB1=A(IAB)

131.000 IB2=A(IAB+1)

132.000 ITAG1=A(IB1+8)

133.000 ITAG2=A(IB2+8) i
134.000 KOUNT=KOUNT-ITAGI-ITAG2 1
135.000 1080  START=FSMIN i
136.000 DO 1090 J=1,20

137.000 END=START+STEP

138.000 IF (FS.GE.START.AND.FS.LT.END) NFS(J)=NFS(J)+KOUNT;GOTO 1100

139.000 IF (J.EQ.20.AND.FS.EQ.FSMAX) NFS(J)=NF3(J)+KOUNT;GOTO 1100

140.000 1090 START=END
141,000 1100 CONTINUE

142.000 C

143.000 RETURN i
144.000 END i
1.000 C A
2.000 SUBROUTINE MICROFEATURES 1
3.000 C

4.000 C*****PROGRAM DETERMINES:

5.000 C

6.000 C a) Contact norwal orivntativn distsibition over 36 erements

7.000 C between 0 snd PI for a given civele NU(3G)

8.000 C b) Average normal contact force, average shear bivee vnlues

9.000 C and average contact vector length distributiona over the

10.000 C the orientation interval 0 to 'L

11.000 C ie FNA(3G),FSA(36).DCA(36)

12.000 C ¢) Coefficient of anisviropy terma for A1 opdes distribation

13.000 C functions ic AA BB FNAA FPNDBD FSAATNSBD AW DAA DD
14.000 C d) Principal directions ie THETAZ, THETAS FPNTHETAZ,
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15.000 C FNTHETA4,FSTHETAZ,DTHETAZ, DTHIETAA
16.000 C e) NOTE: Only stressed contacts connidered

17.000 C

18.000 COMMON /ARAY/ A(108010)

19.000 GCOMMON /BDAT/ R(50)

20.000 COMMON /CIRG/ IBCIRCG(2000),NBT B Tanoi) wis

21.000 COMMON /CONTF/ FNMAX FNMIN FNAV( FEMAX, FEAY G FOMAX FFCAVG, DAV G
22.000 COMMON /FABR/ NCH36}FNA{3G), FSA(36)L,DCA{BG) AA BB THETAZ THETA S,
23.000 *FNAA,FNBB,FNTHETAZ,FNTHETA4, AW AU FUTHETAZDAA DD DTHETAZ. DTH
24.000 *ETA4

25.000 GLOBAL PI

2G6.000 C

27.000 C*****INITIALIZATION

28.000 C

29.000 DO 1000 1=1,36

30.000 1000 NCI(I):FNA(I):::FSA(1)-:::1“)(3}\(1)7«':(),()

31.000 C

32.000 AA=DBB=THETA2=THETA4=0.0
33.000 FNAA=FNDBB=FNTHETA2u:FNTHETA4=:0.0
34.000 FSAA=FSBB=TFSTHETA: 0

35.000 DAA=DBB=DTHETA2=DTHETA4=0.0
36.000 SUMAS=SUMAC=SUMBS=SUMBC=0.

37.000 SUMFNAS=S8UMFNAC=SUMFNBS=SUMFNBC=0.
38.000 SUMFSAS=SUMFSAC=0.

39.000 SUMDAS=SUMDAC=5UMDBS=SUMDBC=0.
40.000 IF (NCS.EQ.0) RETURN

41.000 C

42.000 C*****CONTACT SEARCH

43.000 C

44.000 DO 1060 I=1,NCS

45.000 IAB=ICONT(I)

46.000 IB1=A(IAB)

47.000 1B2=A(IAB+1)

48.000 FN=A(IAB+4)

49.000 FS=A(1AB+5)

50.000 XDIF=A(IB2)+A(IB2+11)-A(IB1)-A(IB1+11)
51.000 YDIF=A (IB2+1)+A(IB2+12)-A(IB1+1)-A{IB1+12)
52.000 D=SQRT(XDIF*XDIF +YDIF*YDIF)

53.000 IF (XDIF*YDIF) 1020,1020,1010

54.000 1010 THETA=ACOS(ABS(XDIF)/D)

55.000 GOTO 1030

56.000 1020 THETA=PI-ACOS(ABS(XDIF)/D)
57.000 1030 ITAG1=A(IB1+8)

58.000 ITAG2=A(IB2+8)

59.000 KOUNT=2-1TAG1-ITAG2

G0.000 ITYP1=A(IB1+9)

61.000 ITYP2=A(IB2+9)

62.000 D=R(ITYP1)+R(ITYP2)-ITAGL*R(ITYP1}-ITAG2*R(ITYP2)
63.000 SUMAS=SUMAS+SIN(2*THETA)*KOUNT

64.000 SUMAC=SUMAC+COS(2*THETA)*KOUNT

65.000 SUMBS=SUMBS+SIN (4*THETA)*KOUNT

66.000 SUMBC=SUMBC+GCOS(4*THETA)*KOUNT

67.000 C

68.000 C*****CONTRIBUTION OF CONTACT SHEAR FORCE TO AW TERM IN
G9.000 C CONTACT SHEAR FFORCE DISTRIBUTION

70.000 C

71.000 AW=AW-KOUNT*FS

72.000 C

73.000 C*****CONTRIBUTION OF CONTACT TO CONTACT DISTRIBUTION HISTOGRAM
74.000 C

75.000 STEP=END=PI/36

76.000 START=0.0

77.000 DO 1040 J=1,36

78.000 END=START+STEP

79.000 IF {(THETA.GE.START . AND.THETA.LT.END)GOTO 1050
80.000 IF {J.EQ.36,AND.THETA.EQ.PI)GOTOQ 1050

81.000 1040  START=END

82.000 GOTO 1060

83.000 1050  NCI(J)=NCI{J}-+KOUNT

84.000 DCA(J)=DCA(J)+D

85.000 FNA(J)=FNA{I) +FN*KOUNT

86.000 FSA())=FSA(H)+FS*KOUNT

87.000 1060 CONTINUR

88.000 C

89.000 C*****CONTRIBUTION OF CONTACT TO NORMAL/SIHEALK FORCE DISTRIBDUTION
90.000 C  AND CONTACT LENGTH HISTOGRAM

91.000 C

92.000 DO 1080 J=1,36

93.000 IF (NCI{J)) 1080,1080,1070

94,000 1070  FNA(J)=FNA(J)/MCI{1)
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95.000 FSA(J)=FSA(J)/NCI(J)

96.000 DCA(J)=DCA(J)/NCI(])
97.000 1080 CONTINUE

98.000 AS=2*SUMAS/NBC
99.000 AC=2*SUMAC/NBC

100.000 BS=2*SUMBS/NBC

101.000 BC=2*SUMBC/NBC

102.000 C

103.000 C*****COEFFICIENT TERMS FOR FAERIC DISTRIBUTION FUNCTION

104,000 C

105.000 1090 CALL I'S4(AS,AC,BS,BC,AA.BB, THETA2, THETA4)

106.000 C '

107.000 G*****COEFFICIENT TERMS AND PRINCIPAL DIRECTIONS FOR AVERAGE NORMAL/
108.000 C  SHEAR FORCE DISTRIBU i FUNCTIONS AND AVERAGE CONTACT LENGTH
109.000 G DISTRIBUTION FUNCTION BASED ON 18 INTERVAL HISTOGRAM (0-2PI)

110.000 C

111.000 THETA1=0
112.000 FNSUM=0
113.000 DSUM=0

114.000 DO 1180 N=1,18
115.000 C

116.000 THETA22=TH
117.000 ANG=(THETA
118.000 FNS=0

119.000
120.000
121.000
122.000
123.000 C
124.000
125.000
126.000 1100
127.000
128.000
129.000
130.000
131,000
132.000
133.000
134,000 1110
185.000
136.000 1120
137.000 1130
138.000
139.000
140.000 C
141.000 1140
142.000 ;
143.000 {T=2-ITAG1-ITAG2
144.000
145.000
146.000
147.000
148.000
149.000
150.000
151.000
152.000 C
153,000 1150
154.000
155.000 1160
156.000
157.000
158.000
159.000
160.000
161.000
162.000
163.000
164.000 .
165.000 SUMDA

2}+A{IB2+11)-A(IB1)-A (IB1+11)
B2+1)+A(IB2+12)-A(IB1+1)-A (IB1+12)
DIF*XDIF+YDIF*YDIF)

DIF) 1120,1120,1110

1-ACOS(ABS(XDIF/D})
ETA.GE.THETAL.AND.THETA.LT.THETA22)GOTO 1140
.AND.THETA.EQ.THETA22)GOTO 1140

A{iB1+9)
A{IB2+0

NAS+FNS*SIN(2*ANG)
NAC+FNS*COS(2*ANG)
BS+FNS*SIN(4*ANG)
MFNBC+FNS*COS(4*ANG)
{DAS+DSS*SIN(2*ANG)
DAC+DSS*COS(2*ANG)
166.000 SUMDBS=8UMDDS+DSS*SIN(4*ANG)
167.000 SUMDBC=SUMDBC+DSS*COS(4*ANG)
168.000 SUMFPSAS=SUMFSAS+FSS*COS(2*ANG)
169.000 SUMFSAC= FSAC-FSS*SIN(2*ANG)
170.000 1170  THETA1=THETA22

171.000 1180 CONTINUE

172,000 C
173.000 FNAS=2"SUMFNAS/FNSUM
174.000 FNAC:Q*SUMFNAC/FNSUM
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175.000 FNBS=2*SUMFNBS/FNSUM
176.000 FPNBC=2*SUMPFNBC/FNSUM
177.000 DAS=2*SUMDAS/DSUM
178.000 DAC=2*SUMDAC/DSUM
179.000 DBS=2*SUMDBS/DSUM
180.000 DBC=2*SUMDBC/DSUM
181.000 FPSAS=-2*SUMFSAS/FNSUM
182.000 FSAC=-2*SUMFSAC/FNSUM

183.000 C
184.000 CALL FS4(FNAS,FNAC,FNBS . FNBC.FNAA, "NBB,FNTHETA2,FNTHETA4)
185.000 CALL FS4(DAS,DAC,DBS,DBC,DAA.LED DTHE

HETA2DTHETA4)
186.000 IF (FSAVG) 1190,1200,1190

187.000 1190 CALL FS2(FSAS,FSAC,AU,FSTHETA?)
188.000 AW=AW /FNSUM

189.000 C

190.000 1200 RETURN

191.000 END

192.000 C

193.000 SUBROUTINE FS4{AS,AC,BS,BC.AA BB THETA2, THETA4)
194,000 C

195.000 C*****Subroutine calculates coefficier
196.000 C for FOURTH-ORDER FOURI?
197.000 C EXPRESSION

198.000 C

199.000 GLOBAL PI

200.000 C

201,000 AA=SQRT(AS*AS+AC*AC)
202.000 BB=SQRT(BS*BS+BC*BC)
203.000

IF (AS.EQ.0.0) THETA2=FI/4.:G0TO
204.000 THETA2=0.5*ATAN2{AS,AC]

205.000 1000 IF (BS.EQ.0.0) THETA4=PI/4: RETURN
206.000 THETA4=0.25"ATAN2{BS,BC)

207.000 IF (THETA2.LT.0.0) TBETA2=PI+THETA2
208.000 I (THETA4.LT.0.0) THETA4=PI+THETA4
200,000 C

210.000 RETURN

211,000 END

212.000 C

213.000 SUBROUTINE FS2{AS,AC,AA,TEETA?2)
214.000 C

215.000 C*****Subroutine calculates coefficients and principal direction
216.000 C for a SECOND-ORDER FOURIER SERIES EXPRESSION

217,000 C of the form: naxsin2(0-02)
218.000 C

219.000 GLOBAL PI

220.000 C

221.000 AA=SQRT(AS*AS+AC*AC)

222.000 IF (AS.EQ.0.0) THETA2=PI/4.; RETURN
223.000 THETA2=0.5*ATAN2(AS,AC)

224,000 IF (THETA2.LT.0.0) THETA2=PI+THETA2
225.000 C

226.000 RETURN
227.000 END

1.000 C

2.000 SUBROUTINE CIRCLE(IC)

3.000 C

4.000 C*****PROGRAM DETERMINES FOR CIRCLE LOCATED AT XC,YC AND RADIUS RC:
5.000 C

6.000 C 1} BOUNDARY DISCS (ie discs intersecting circle cicumference)
7.000 C 2) DISCS FALLING ON AND WITHIN CIRCLE

8.000 C 3) CONTACTS FALLING WITHIN AND ON CIRCLE

9.000 C (stressed contacts only)

10.000 C 4) Addresses of discs falling WITHIN and ON circle

11.000 C boundary identified in array IBCIRC(NBT)

12.000 C 5) Addresses of discs falling ON circle boundary

13.000 C identified in array BBALL(NB)

14.000 C

6) A(IAB+8)=1 identifies boundary disc
15.000 C 7) Addresses of contacts falling WITHIN and ON circle
16.000 C identified in array ICONT(NCS)
17.000 C 8) NCS = TOTAL NUMBER OF PHYSICAL CONTACTS
18.000 C WITHIN AND ON CIRCLE PERIMETER

19.000 C 9) NBC = TOTAL NUMBER OF CONTACTS

20,000 C NBC=NBC+2 FOR TWO CONTACTING DISCS WITHIN CIRCLE
21.000 C NBC=NBC+1 FOR ONE BOUNDARY DISC AND ONE INTERNAL
22.000 C DISC FORMING CONTACT

23.000 C NBC=NBC+0 FOR TWO CONTACTING BOUNDARY DI3SCS
24.000 C

25.000 DIMENSION XX(2),YY(2),NBM(4)
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26.000 COMMON /ARAY/ A(108910)

27.000 COMMON /BDAT/ R(50)

28.000 COMMON /SRCH/ NCSAV{2000).}
29.000 COMMON /BBAL/ BBALL(1000].¥
30.000 COMMON /CIRC/ IBCIRC{100¢
31.000 GLOBAL DEL,NX,NY TOL M1,
32.000 C

33.000 C*****DETERMINE BOXES THAT ¢
34.000 C

35.000 C*¥******¥FIND LARGEST AND $M4 OF BOX THAT CIRCLE
36,000 C AND ENCLOSED AREA MAP:
37.000 C

38,000 XC=XCR(IC);YC=YCR(IC}:
39,000 XX{1)=XC-RC
40.000 YY(1)=YC-RC
41.000 XX (2)=XC+RC
42.000 YY(2)=YC+RC

43.000 AREA=PI*RCR(IC)*RIRIE
44.000 C

45,000 T=TOL

46.000 K=1

47.000 DO 1010 J=1,2
48.000 DO 1010 I=1,2
49.000 IF (J.LEQ.2) T=-T
50.000 XD=XX(I)+7T
51.000 YD=YY(I)+T
52.000 NXD=IFIX{¥
53.000 NYD=IFIX
54.000 IF (JLEQ.2)
55.000 IF (XD.GT.
56.000 IF (YD.GT
57.000 1000 NDBM(E}

58.000 1010 K=K+1

59.000 NBMAX=AMA"
60.000 NBMIN=AMI?

61.000 C
62.000 CH**¥*****DETER LT
63.000 C
64.000
65.000 LAT1)
66.000 : ;

67.000
68.000
69.000
70.000
71.000 C
72.000 thitttt*tla
73.000 C

74.000

75.000

76.000

77.000

78.000 }

79.000 1020 NCSA

80.000 C

81.000 C*****DETER X

R e

JOLUMNS OF BOXES THAT CIRCLE MAPS INTO

32 3 WHICH MAP INTO VICINITY OT CIRCLE
82.000 C

83.000 CALL 824

84,000 C

85.000 C*¥****IDENT : FALLING WITHIN AND ON CIRCLE BOUNDARIES
86.000 C

87.000 NB=X
88.000 DO 10
89.000
90.000
91.000
92.000
93.000
94.000
95.000
96.000
97.000
98.000
99.000 1030
100.000
101.000
102.000 1040
103.000
104.000 1050
105.000 C

[F*XDIF+YDIF*YDIF)
1 1030,1030,1050
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106.000 C*****GENERATE LIST OF CONTACTS WHICE FALL WITHIN CIRCLE PERIMETER
107.000 C

108.000 NCS=NBC=0

109.000 DO 1140 I=1,NBMAP

110.000 IAB=A(NCSAV(I))

111.000 1060  IB1=A(IAB)

112.000 IF (IB1) 1140,1140.1070

113,000 C

114.000 C*****NON-STRESSED CONTAL

115,000 C

116.000 1070  FN=A({IAB+4)

117.000 IF (FN) 1130,113,1080

118.000 1080  IB2=A(IAB+1)

119.000 C

120.000 C*****CONTACT FORMED BY TWO BOUNDARY DISCS L=1
121.000 C CONTACT BETWEEN RBOUNDARY DISC AND INTERNAL DISC L=2
122.000 C ~CONTACT BETWEEN TWO BOUNDARY DISCS L=3
123.000 C

124.000 ITAG1=A(IB1+8)

125.000 ITAG2=A(IB2+8)

126.000 L=ITAGL+ITAG2+1

127.000 C

128.000 1090 X=A(IB2)+A(IB2+11)
129.000 Y=A{IB2+1)+A({IB2+12)

130.000 XDIF=A(IB1)+A(IB1+11)-X
131.000 YDIF=A{IB1+1)+A(IB1+12)-Y
132.000 D=SQRT(XDIF*XDIF+YDIF*YDIF)
133.000 ITYP1=A({IB1+9)

134.000 ITYP2=A(IB2+9)

135.000 R1=R(ITYP1)

136.000 R2=R(ITYP2)

137.000 GAP=D-R1-R2
138.000 RAT=(R2+GAP/2.0})/D
139.000 C
140.000 C**H***x+x*x*CONTACT COORDINATES
141.000 C
142.000 KCT=X+XDIF*RAT
143,000 YCT=Y+YDIF*RAT
144.000 C
145.000 C**********CONTACT WITHIN CIRCLE?

146.000 C

147.000 XDIF=XCT-XC

148.000 YDIF=YCT-YC

149.000 D=SQRT{XDIF*XDIF+4YDIF*YDIF)

150.000

IF {D-RC) 1100,1100,1130
151.000 1100 NCS=NCS+1

152.000 ICONT(NCS)=IAB
153.000 GO TC (1120,1110,1130}L
154.000 1110 NBC=NBC+1

155,000 GOTO 1130

156.000 1120 NBO=NBC+2

157.000 1130 IAB=I1AB+6

158.000 GOTC 1060

159.000 C .

160.000 1140 CONTINUE

161.000 C

162.000 RETU

163.000 END

1.000 C

2.000 SUBROUTINE BVOLUME2
3.000 C

4.000 C*****PROGRAM DETERMINES BOUNDARY DISCS FORMING CONVEX POLYGON
5.000 C

BOUNDARY FOR NEAR-CIRCULAR "SUB-ASSEMBLY” OF DISCS AND
6.000 C CALCULATES ENCLOSED AREA

7.000 C

8.000 C 1) Boundary disc addresses loaded into array BBALL(NB)
9.000 C

10.000 COMMON /A / A(108910)

11.000 COMMOXN IBCIRC(2000),NBT

12.000 COMMON /BBAL/ BBALL(1000),NB,AREA,N

13.000 GLOBAL PI

14.000 DATA SMALL/1.0E-20/ YO/10000./

15.000 REAL MIDY

16.000 C

17.000 C*****FIND LOWEST DISC ALONG SUB-ASSEMBLY BOUNDARY (address=IBFST)
18.000 C

19.000 DO 1010 I=1,NBT
20.000 IAB=IBCIRC{I)
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21.000
22.000

ITAG=A(IAD+8)
IF (ITAG) 1010,1010,1000

23.000 1000  Y=A(IAB+1)}+A(IAB+12)

24.000

25.000 1010 CONTINUE

26.000

IF (Y.LT.YO) IBLST=IAB;XO=A(IAB)+A{JAB~+11):YO=A(lA

BBALL{1)=IBFS$T=IBLST

27.000 C

28.000 C*****FIND SEQUENCE OF BOUNDARY Dis¢
29.000 C MINIMUM CHANGE IN ANGLE BETW
30.000 C CENTRES OF DISCS

BY CONSIDERING
LINES CONNECTING

31.000 C
32.000 N=1
33.000 BETO0=0.0
34.000 1020 ALPMIN=2*PI
35.000 DO 1050 I=1,NBT
36.000 IAB=IBCIRC(I)
37.000 ITAG=A(IAB+38)
38.000 IF (ITAG) 1050,1050,1030
39.000 1030  IF (IAB.EQ.IBLST}GOTQ 1950
40.000 DX=A(IAB)+A(IAB+11}-X0O
41.000 DY=A(IAB+1)+A{IAB+12}.¥ 0
42.000 IF (ABS(DX).LT.SMALL)} BET=81GN(PI/2.,DY);GOTO 1040
43.000 BET=ATAN2(DY.DX)
44.000 1040  IF (BET.LE.0.0) BET=2*PI+BET
45.000 ALP=BET-BETO
46.000 IF (ALP.LT.-.5)GOTC
47.000 IF (ALP.GT.ALPMIN}
48.000 IBMIN=IAB
49.000 ALPMIN=ALD
50.000 BETMIN=BET
51.000 1050 CONTINUE
52.000 C
53.000 DO 1060 I=1.N
54.000 1060 IF (IBMIN.EQ.B 113G OTO 1070
55.000 N=N+1
56.000 XO=A(IBMIN)
57.000 YO=A{IBMIX
58.000 BBALL{N}=IBL
59.000 BETO=BETMIN
60.000 GOTO 1020
61.000 C
62.000 C*****CALCULATE $UB-ASSEMBLY AREA
63.000 C
64.000 1070 AREA=0.0
65.000 DO 1110I=1.%
66.000 IF (LEQ.N:GOTO 1080
67.000 GOTO 1099

©68.000 1080 IB2=BBALL:1}

69.000

GOTO 1104

70.000 1090 IB2=BBALLi{I+1)

71.000 1100 IB1=BBALL{I}

72.000
73.000
74.000

MIDY=(A{IB2+1)+A(IB2+12)+A(IB1+1)+A(IB1+12))/2.0
DX=(A(IB2)+A{IB2+11)-A(IB1)-A(IB1+11))
PART=-MIDY*DX

75.000 1110 AREA=AREA+PART

76.000 C
77,000
78,000

1.000 C
2.000
3.000 C

RETURN
END

SUBROUTINE STRESS

4.000 C*****PROGRAM CALCULATES BOUNDARY STRESS TENSOR VALUES

5.000 C
6.000 C
7.000 C
8.000 C
9.000
10.000
11.000
12.000
13.000
14.000
15.000 C
16.000
17.000
18.000
19.000
20.000

FOR INTERIOR ASSEMBLY OF DISCS

(BOUNDARY CORRESPONDS TO CIRCLE "IC" WITH RADIUS "RC"
AND CENTRED AT "XC" AND "Y(C")

COMMON /ARAY/ A{108910)

COMMON /BBAL/ BBALL(1000),NB,AREA

COMMON /CIRG/ IBCIRC(2000},NBT,ICONT(4000),NCS
COMMON /BSTR/ BSIG(2,2)

COMMON /BDAT/ R{50)

DATA SUM11/0./ SUM12/0./ SUM21/0./ SUM22/0./

DO 1020 I1=1,NCS
1IAD=ICONT(I)
IB1=A(IAD)
IB2=A(IAD+1)
XDIF=A(IB1})+A (IB1411)-A(IB2)-A(IB2+11)
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21.000

YDIF=A{IB1+1)+A(IB1+12)-A{IB2+1)-A{IB2+12]

22.000 D=SQRT(XDIF*XDIF+YDIF*YDIT)
23.000 CA=XDIF/D
24.000 SA=YDIF/D
25.000 FX=A(IAD+4)*CA+A(IAD+5)*SA
26.000 FY=A(IAD+4)*SA-A(IAD+5)*Ca
27.000 G
28.000 ITAG1=A(IB1+8)
29.000 ITAG2=A (1B2+8)
30.000 L=ITAG14+ITAG2+1
31.000 GO TO (1010,1000,1020)L
32.000 C '
33.000 1000  D=ITAGI*R({A(IB2+9))+ITAG2*R{A{IB1+0))
34.000 1010 SUMI11=SUMI11-FX*CA*D
35.000 SUM12=SUM12-FY*CA*D
36.000 SUM21=SUM21-FX*SA*D
37.000 SUM22=SUM22-FY*SA*D
38.000 C
30.000 1020 CONTINUE
40.000 C
41.000 BSIG(1,1)=SUM11/AREA
42.000 BSIG(1,2)=SUM12/AREA
43.000 BSIG(2,1)=SUM21/AREA
44.000 BSIG(2,2)=SUM22/AREA
45.000 C
46.000 RETURN
47.000 END
1.000 C
2.000 SUBROUTINE STRAINZ
3,000 C

4.000 C*****PROGRAM CALCULAT
5.000 C NEAR CIRCULAR I’\.'I‘P it
6.000 C

UB-ASSEMBLIES

7.000 GLOBAL M2 .

8.000 DIMENSION B(170

9.000 VIRTUAL B*(STATT {NOWN,BUF=200I0STAT=IT)
9.100 COMMON /ARAY/ A

10.000 GOMMON /ER &Y

11.000 COMMON /STR i2.2)

12.000 COMMON /BB u; BBALL{1000),NB,AREA,NAREA

13.000 C

14.000 C*****NOTES:

16.000 C 1) B(15000) DATA FROM REFERENCE DUMP FILE
16.000 C 2) BBALL(¥ RRENT BOUNDARY BALL ADDRESSES FOR
17.000 C t SUB-ASSEMBLY

18.000 C 3) NB= N X OF BOUNDARY BALLS

19.000 C 4)  AREA YSEMBLY AREA

20.000 C

21.000 SUMI11=SUM12=5U21=SUM22=0.

22.000 DO 10 I=1,NAREBA

23.000 IB1=BBALL(I}

24.000 XS1=B(IB1)+B(IB1+11)
25.000 YS1=B(IB1+1j+B{IB1+12)
26.000 XF1=A{IB1)+A(IB1+11}
27.000 YF1=A(IBl+1}+A(IB1+12)
28,000 IF(LEQ.NB) GG TO 30
29.000 IB2=BBALL{I+1)

30.000 50 XS2=B(IB2)+B{IB2+11)
31.000 YS2=B(IB2+1)+B{IB2+12)
32.000 XF2=A(IB2)+A(IB2+11)
33,000 YF2=A(IB2+1)+A(IB2+12)

34,000 GO TO 40

35,000 30 IB2=BBALL(1)

36.000 GO TO 50

37.000 40 CONTINUE

38.000 C

39.000 DX=(XS1-X82-XF1+X

40,000 DY=(YSI-YS2-YF1+YF

41.000 SX=XF2-XF1

42.000 SY=YF2-YF1

43.000 SUM11=SUMI11-DX*SX/AREA
44,000 SUM12=8SUMI124+DX*SY/4REA
45.000 SUM21=SUM21-DY *SX/AREA
46.000 SUM22=SUM22+DY*SY /AREA
47.000 10 CONTINUE

48.000 C

49.000 EIJB(1,1)=SUM11

50.000 EIJB(1,2)=SUM12
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51.000 EIIB(2,1)=SUM21

52.000 ELIB(2,2)=SUM22

53.000 C

54.000 RETURN

55.000 END . i
1.000 C

2.000 SUBROUTINE UPDATE(NBLXE

3.000 C

4.000 C******PROGRAM UPDATES CO
5.000 C CONTACTS FOR BOX NB 3
6.000 C ARE MOVED TO THEIR C
7.000 C

8.000 C IB1= HIGHER DISC ADT
9.000 C IB2= LOWER DISC 4D
10.000 C ONLY TO CHECK F
11.000 C NDB= BOX ADDRESS ¢ NTI .
12.000 C NBSAV(NBMAP}=AD ZOMES

13.000 C

14.000 DIMENSION OLD(6}

'
o
{
v

{F LIST IS BEING SCANNED

15.000 COMMON /ARAY/ A{11

16.000 COMMON /SRCH/ NB BMAP
17.000 GLOBAL NCBOX

18.000 C

19.000 C*****SCAN CONTACT
20.000 C CONTACT FOR

B{OX NB AND CHECK FOR EXISTING

g
o

21.000 C <
22.000 IAD=A(NB) 2
23.000 1000 IB1=A(IAD}
24.000 IF (IB1) 1029.1
25.000 1010 IB2=A(IAD
26.000 IF ({IB1¥IB2) NE
27.000 IAD=IAD+
28.000 GOTO 1o

29.000 C

30.000 C*****CHECH LIST OF BOX NB FOR NB1 AND NB2
31.000 C  ISLIST OF SINGLE ENTRY LIST OF BOX NB
32,000 C  IFLIST= T ADDRESS OF SINGLE ENTRY LIST OF BOX NB
33.000 C

34.000 1020 ISLIST
35.000 1030 IB1=AB
36.000 IF (IB1} 1
37.000 1040 IF (IB1.EQ.N
38.000 IFLIST=IF
39,000 1050 IAD=IAD
40.000 GOTO 1039

1. EQ.NB2)GOTO 1060

deposit in any other institution cannot be made
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S
=z,
41.000 C -
42,000 C****REMOV =3
43.000 C S5
44.000 1060 ICEND=A{? ON"6-1 g
45.000 DO 1070 14 END-1 g o
46.000 1070 A(IAB)=A(IAD 8
47.000 IF (IAD.EQ.ISLIST) A{IAD)=-A(IAD) -
48.000 A(ICEND)=0, S
49,000 GOTO 1030 ":3 =
50,000 C 5.8
51.000 C*****SCAN ADJACENT BOXES FOR CONTACT NB1/NDB2 g
62.000 C 4 4
53.000 1080 DO 1110 I=1,NB Q u
54,000 IF (NB.EQ.NBSA GOTO 1110 =}
55.000 JIAD=A(NBSAV 3
56.000 1000  IB1=A(IAD) a
57.000 IF (IB1) 1110,1110.11¢ é’
58.000 1100  IB2=A(IAD=1] 2
59.000 IF {(IB1*IB2).EQ./NT1:*NB2))GOTO 1130 &
60.000 IAD=IAD+6 =
61.000 GOTO 1000 3
62.000 1110 CONTINUE Z
63.000 C 5
64.000 C*****NEW CONTACT CREATED FOR BOX NB 9
65.000 C  INITIALIZE TEMPORARY CONTACT STORAGE ARRAY z
66.000 C g &
67.000 DO 1120 K=1,6 @
68.000 1120 OLD(K)=0. =
69.000 GOTO 1170 =
70.000 C

71.000 C*****STORE DATA FOR CCONTACT NB1/NB2 FROM ADJACENT BOX NBSAV(I)
72.000 C TEMPORARILY IN ARRAY OLD(J)
73.000 C
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74.000 1130 DO 1140 J=1,6

75.000 1140 OLD(J)=A(IAD+1J-1)

76.000 C

77.000 C*****DELETE CONTACT NB1/NB2 T

78.000 C
79.000 C
80.000
81.000

83.000

NBSAV(I)

ICEND=A (NBSAV(I))4+NCBOX*¢-1
DO 1150 IAB=IAD,ICEND-6
82.000 1150 A(IAB)=A(IAB+6)

DO 1160 IAB=ICEND-5,ICEND

84.000 1160 A(IAB)=o0.

85.000 C

86.000 C*****CHECK THAT THERE IS AT
IN BOX NBSAV(I)

87.000 C
88.000 C
89.000
90.000
91,000 C

92,000 C*****UPDATE CONTACT LIST 7
TRANSFERED IFROM AD3IAL

93.000 C
94.000 C

CALL CHECK(NB1,NBSA
CALL CHECK(NB2,NBSA

95.000 1170 IAD=IFLIST+6

96.000
97.000

DO 1180 J=1IFLIST
A(IAD)=A{IAD-6)

98,000 1180 IAD=IAD-1

99,000
100.000 C
101.000
102.000
103.000
104.000
105.000
106.000
107.000
108.000

A(ISLIST+6)=SI1G%{ A {18

A(ISLIST)=NB1
o

A(ISLIST+1)
A(ISLIST+2j=
A(ISLIST+3’
A(ISLIST+4
A(ISLIST+5}
RETURN
END
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1.000 C

2.000 PROGRAM AUTODISC

3.000 C

4.000 C*****PROGRAM GENERATES RANDOMLY LOCATED DISCS WITHIN A CIRCULAR
5.000 C  AREA AND INITIALIZES "A" ARRAY

6.000 C

7.000 DIMENSION PERG(50),ITYPE(50),NBT(50)

8.000 COMMON /ARAY/ A(110000)

9.000 COMMON /BDAT/ R(50)

10.000 COMMON /BBAL/ EBALL(1500),NBR, AREA
11.000 GLOBAL TRY,DEL,NBOX,NX,NY M.}

12.000 GLOBAL TDEL,XC,YC,RC,PLLNBALL,

13.000 C

14.000 INTEGER W,H,RC,TRY, ARANGE
15.000 CHARACTER*40 BINFILE,AUTC

16.000 DOUBLE PRECISION DSEED.THE

17.000 C

18.000 DATA RMIN/1.0E+20/ RMAN /5 /1.6{ TDEL/0.0/ DSEED/123456.D0/
19.000 C

20.000 C*****OPEN INSTRUCTION Fi
21.000 C
22.000 OPEN (5,FILE="FILE'.§TATY
23.000 C

OLD ACCESS="KEYED' FORM='FORMATTED’)
24,000 C*****READ INSTRUCTION
25.000 C

TE ASSEMELY

26.000 READ (5,'{2G.0)") W.H

27.000 READ (56,'{G.0)") RC

28.000 READ (5,'{2G.0}"

29.000 READ (5,

30.000 READ (5,'(

31.000 READ (5.'(

32,000 C

34.000 C

35.000 2 3TATUS='NEW',ACCESS='"KEYED")

36.000 STATUS='OLD',ACCESS='SEQUENTIAL',FORM="FORMATTED")
37.000 OPEN ({3.NA) RB' STATUS='OLD',ACCESS='SEQUENTIAL' FORM='FORMATTED")
38.000 OPEN (4.NAME=4

39.000 C

40.000 C*****INPUT DIS
41.000 C

42,000 DO 1000 I
43.000 NBTYP
44.000 READ {
45.000 IF {R{

46.000 IF {RiI
47.000 1000 CONTI
48,000 C

49.000 C*****SETUP BONES

50.000 C
51.000 1010 NBOX=W E/{{2"RMAX)**2)+0.5
52.000 NX=SQRT{FLOAT({NBOX)*W/H)+0.5
53.000 NY=SQRT{FLOAT{NBOX)*H/W)+0.5
54.000 DEL=AMAXL{W /FLOAT(NX),H/FLOAT(NY))
55.000 NBOX=NX*NY
56.000 C
57.000 C*****3SETUP MEMORY PARTITIONS
58.000 C
59.000 M1=300
60.000 M2=NBOX+M1
61.000 M4=(NBALLMAX)*14+M2
62.000 C
63.000 C*****INPUT DISC RADII DISTRIBUTION DATA
64.000 C
65.000 DO 1020 I=1,NBTYP
66.000 1020 READ (3,'(2G.0).END=1030) ITYPE(I),PERC(I)
67.000 C
68.000 C*****CALCULATE MAXIMUM ADDRESS OF A ARRAY
69.000 C
70.000 1030 IAEND=NCBOX*6*NBOX+M4-1
71.000 C
72.000 C*****INITIALIZE A ARRAY TO ZERO
73.000 C
74.000 DO 1040 I=1,JAEND
75.000 1040 A(1)=0.0
76.000 C
77.000 C*****INITIAL DATA FOR A ARRAY
78.000 C
79.000 A(1)=IAEND
80.000 A(2)=wW
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81.000 A(3)=H
82.000 A(4)=NBOX

83.000 A{7)=NCBOX

84.000 A(8)=NX

85.000 A(9)=NY

86.000 A{10)=DEL

87.000 A{11y=M1

88.000 A{12)=M2

89.000 A(13)=A(14)=M3=M4

90.000 A(20)=NBTYP

91.000 C :

92.000 C*****SETUP A ARRAY ADDRESSES TO CONTACT LISTS FOR BOXES
93.000 C

94.000 IAB=M4

95.000 DO 1050 I=M1,NBOX+M1-1

96.000 A(1)=IAB

97.000 1050 IAB=NCBOX*G+IAB

98.000 C

99.000 C*****LOCATE DISCS USING ISMLD LIBRARY RANDOM NUMBER GENERATORS
100.000 G

101.000 IAB=M2
102.000 PI=4.0*ATAN(1.0)
103.000 Z ARANGE=2*PI*1E+08

104.000 XC=W /2.0

105.000 YC=H/2.0

106,000 KT=0

107.000 DO 1090 K=1,NBTYP
108.000 KOUNT=0

109.000 IF (PERC(K).EQ.0.0)G
110.000 NB=(PERC(K)*NBALL}
111.000 I=1

112.000 IF (KOUNT.GE.NB}(
113.000 REPEAT 1070, WHILE [ LT
114.000 1060 CONTINUE

115.000 C

116.000 C*****LOCATE TRIAL
117.000 C RANDOM GEX
118.000 C

NG [RADIAL DISTANCE, ANGLE)
PILE Z STATEMENTS)

119,000 Z RO, 1IR

120.000 Z ,ARANGE,1,ITHETA)
121.000 Z .E+08

122,000 2 {THETA)

123.000 2 THETA)

124,000 C

DISCS USING (X,Y) RANDOM GENERATOR
126.000 C  (GOMPILE Y STATEMENTS)

127.000 C

128.000 Y CALL GGUD{DSEED,W,1,IR)

129.000 Y X=IR{1}

130.000 Y CALL GGUD{DSEED,H,1,IR)

131.000 Y Y=IR(1}

132.000 Y AW /2)* 24 (Y-H/2)**2-RC**2
133,000 Y IF (DIST.GT.0.)GOTO 1060

134.000 C

135.000 CALL AUTOREBOX(IAB,X,Y,ITYPE(K))
136.000 IF (TRY.GT.10)GOTO 1070

137.000 IXX=X

138.000 IYY=Y

139.000 A(IAB)=IXX

140.000 A(IAB+11}=X-IXX

141.000 A(IAB+1)=1YY

142.000 A(IAB+12)=Y-1YY

143.000 A(IAB+9)=ITYPE(K)

144.000 IAB=IAB+14

145.000 KOUNT=KOUNT+1

146.000

IF (KOUNT.GE.NB)GOTO 1080
147.000 1070 I=I+1

148,000 1080 CONTINUE

149,000 KT=KOUNT+KT

150.000 C

151.000 C****GOMPILE X STATEMENTS TO OUTPUT DISC GOUNT TO TERMINAL DEVIGE
152.000 C

153.000 X OUTPUT,KT

154.000 C

155.000 NBT(K)=KOUNT

156.000 1090 CONTINUE
157.000 1100 NBT(K)=KOUNT

158.000 A{6)=NBALL=KT
159.000 C

160.000 C*****COMPACT ASSEMBLY ISOTROPICALLY
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161.000 C
162.000  IF (NCYC.NE.0) CALL ISOPAC

163.000 C

164.000 C*****SETUP CONTACT LIST
165.000 C

166.000 IAB=M?2

167.000 DO 1110 [=1,NBALL
168.000 CALL REBOX(IAB)
169.000 1110 IAB=IAB+14

170.000 C

171.000 C*****WRITE RANDOM DISC GENERATION RESULTS TO AT
172.000 C

173.000 1120 WRITE (4,9000)

174.000 WRITE (4,9010) BINFILE
175.000 WRITE (4,9020)

176.000 WRITE (4,9030) W

177.000 WRITE (4,9040) H

178.000 WRITE (4,9050) NBOX
179.000 WRITE (4,9060)

180.000 WRITE (4,9070)

181.000 C

182.000 DO 1130 I=1,NBTYP
183.000 NB=(NBALL*PERC(I}/100.0}+0.5

184.000 1130 WRITE (4,0080) ITYPE(I),NB.P
185.000 C

186.000 WRITE (4,9090) NBALLMAX
187.000 WRITE (4,9100)

188.000 WRITE (4,9070)

189.000 C

190.000 DO 1140 I=1,NBTYP

191,000 PC=100.0*"NBT(l} /K

192,000 1140 WRITE (4,9080)iT
193.000 C

194.000 WRITE (4.9110; NBALL
195.000 CALL BBOUND

196.000 CALL BVOLUME
197.000 CALL BALLDENS
198.000 WRITE (4.9i20} AREA
199,000 WRITE {4.5120} DNSTY
200.000 C

201.000 C*****WRITE A ARRAY TO BINARY CONFIGURATION FILE
202.000 C

203.000 WRITE {1, KEY=1000) (A{I),I=1,IAEND)
204.000 C

205.000 CLOSE (1,STATUS='KEEP’)

206.000 CLOSE (2,STATUS="KEEP’)

207.000 CLOSE (3,8TATUS="KEEP")

208.000 CLOSE (4,STATUS='KEEP")

209.000 C

210.000 STOP

211.000 9000 FORMAT(/.1X,'"RANDOM PARTICLE GENERATION’,/)

212.000 9010 FORMAT( 1X.'FID FOR BINARY FILE OUTPUT = ',A40)
213.000 9020 FORMAT( 1X/, RECORD KEY =1,/)

214.000 9030 FORMAT( 1X,'WIDTH OF RECTANGULAR AREA W = ',I5)
215.000 9040 FORMAT( 1X,/'HEIGHT OF RECTANGULAR AREA H =",I5)

216.000 9050 FORMAT( 1X,'NO. OF BOXES
217.000 9060 FORMAT(/,1X,'INITIAL BALL DATA’)
218.000 9070 FORMAT( 1X,'BALL TYPE NUMBER PERCENT RADIUS"/)

219.000 9080 FORMAT( 1X,12,8%,14,6%,F5.1,56%,13,7X)

220.000 9090 FORMAT(/,1X,'TOTAL NUMBER OF BALLS ATTEMPTED TO PLACE = ',I4)
221.000 9100 FORMAT(/,1X,'"FINAL BALL DATA’)
222.0009110 FORMAT(/,1X,'TOTAL NUMBER OF BALLS PLACED = ",14)
223.000 9120 FORMAT( 1X,VOLUME OF ASSEMBLY

= ",E12.6)
224.000 9130 FORMAT( 1X,’DENSITY OF ASSEMBLY = ",E12.6)
225.000 END

NBOX = ',15)
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1.000 C
2.000
3.000 C

4.000 C*****PROGRAM LOADS NON-OVERLAPPING DI
5.000 C FOR ASSEMBLY AREA

SUBROUTINE AUTOREBOX(IAB,X,Y.ITYPF)

6.000 C

7.000 COMMON /ARAY/ A(110000)

8.000 COMMON /BDAT/ R(50)

9.000 COMMON /SRCH/NBSAV (2000).NBM
10.000 GLOBAL DEL,NX,M1,NY,TOL.M2
11.000 GLOBAL MFLAG,TRY,XC,Y C.RC
12.000 C

13.000 LOGICAL MFLAG
14,000 INTEGER TRY,RC

15,000 C

16.000 TRY =0

17.000 1000 IF (TRY.GT.10) RETURN
18.000 C

19.000 C*****T0O DETERMINE A

20.000 C (SEARCH RADIUS = RAT
21.000 C

22.000 NBMAP=0
23.000 RAD=R(ITYPF)
24.000 RT=RAD+TOL

25.000 NXL=IFIX((X-RT}/D

BL)
26,000 NXU=IFIX((X+RT};/DEL}
27,000 IF ((X+RT).GE.(NX*DEL})

DE NAU=NXU-1

28.000 NYL=IFIX((Y-RT)/DEL
29.000 NYU=IFIX((Y+RT}/

K-w K”“ \w

'DEL)
30.000 IF ((Y+RT).GE.(NY*DEL}) NYU=NYU-1
31,000 C
32.000 DO 1030 NYY=NYL.NYU
383.000 NA=NYY*NX
34.000 DO 1030 NXX XU
35.000 NB=NA+NXX+M1
36.000 IF (NBMAP.EQ.O0IGOTO 1020
37.000 DO 1010 433
38.000 IF (NBSA
39,000 1010 CONTINU
40.000 1020 NBMAP=NBMAP+1
41.000 NBSAV{NBMAP)=NB
42.000 1030 CONTINUE
43.000 C
44,000 C*****IDENTIFY DISCS IN SCANNED BOXES
45.000 C
46.000 CALL SEARCH
47.000 C
48.000 C*****TEST FOR DISC-DISC CONTACT
49.000 C
50.000 DO 1040 I=1,NBB
51.000 NBL=IRBSAV{I)
52.000 IF (NBL.EQ.IAB)GOTO 1040
53.000 CALL AUTOBTEST(NBL,X,Y,ITYPF)
54.000 XDIF=X-XC;YDIF=Y.YC;D=SQRT(XDIF*XDIF+YDIF*YDIF)
55.000 IF (D.GT.FLOAT(RC)) TRY=1LRETURN
56.000 I (MFLAG) TRY=TRY+1;GOTO 1000
57.000 1040 CONTINUE
58.000 C
59.000 C*****INCLUDE DISC IN CONTACT LIST
60.000 C
61.000 DO 1050 I=1,NBMAP
62.000 1050 CALL CHECK(IAB,NBSAV(I))
63.000 C
64.000 RETURN
65.000 END
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1.000 C

2.000 SUBROUTINE ISOPAC

3.000 C

4.000 C*****PROGRAM ISOTROPICALLY COMPACTS INITIAL NEAR-CIRCULAR ASSEMBLY
5.000 C

6.000 COMMON /ARAY/ A(110000)

7.000 GLOBAL NBALL,M2,NCYC,DSTEP,BBALL(1500),XCA.YCA . TRY
8.000 INTEGER TRY

9.000 C

10.000 XCA=A(2)/2.0

11.000 YCA=A(3)/2.0

12,000 CALL ORDER

13.000 DO 1000 NN=1,NCYC

14.000 DO 1000 NB=1,NBALL

15.000 IAB=BBALL(NB)

16.000 XO=A(IAB)+A(IAB+11)

17,000 YO=A(IAB+1)+A(IAB+12)

18.000 XDIF=XCA-XO

19.000 YDIF=YCA-YO

20.000 DO=SQRT(XDIF*XDIF+YDIF*YDIF)
21.000 DX=DSTEP*XDIF/DO

22.000 DY=DSTEP*YDIF/DO

23.000 X=X0+DX

24.000 Y=YO+DY

25.000 ITYP=A(IAB+9)

26.000 CALL AUTOREBOX(IAB,X,Y,ITYP)
27.000 IF (TRY.GT.10)GOTO 1000

28.000 XDIF=XCA-X

29.000 YDIF=YCA-Y

30.000 D=SQRT(XDIF*XDIF+YDIF*YDIF)
31.000 IF (D.GT.DO)GOTO 1000

32.000 A(IAB)=IXX=X

33.000 A(IAB+1)=IYY=Y

34.000 A(IAB+11)=X-IXX

35,000 A(IAB+12)=Y-IYY

36.000 1000 IAB=IAB+14

37.000 C

38.000 RETURN

39.000 END

1.000 C

2.000 SUBROUTINE ORDER
3.000 C

4.000 C*****Program orders di

¢s with respect to increasing
5.000 C distance from centre of assembly
6.000 C
7.000 COMMON /ARAY/ A(110000)
8.000 GLOBAL NBALL.M2.BBALL(1500),XCA,YCA
9.000 DATA DMIN/1.0E+20/
10.000 C
11.000 NB=1
12.000 1000 IAB=M2
13.000 DO 1030 I=1,NBALL
14.000 IF (A(IAB+9)) 1030,1030,1010
15.000 1010 X=A(IAB)+A(IAB+11)
16.000 Y=A(IAB+1)+A(IAB+12)
17.000 XDIF=X-XCA
18.000 YDIF=Y-YCA
19.000 D=SQRT(XDIF*XDIF+YDIF*YDIF)
20.000 IF (D.LE.DMIN)GOTO 1020
21.000 GOTO 1030
22.000 1020 BBALL(NB)=IADB
23.000 DMIN=D
24.000 1030 IAB=IAB+14
25.000 IAB=BBALL(NB)
26.000 A(IAB+9)=-A(IAB+9)
27.000 NB=NB+1
28.000 Ir (NB.EQ‘(NBALL-:»I))GOTO 1040
29.000 GOTO 1000
30.000 C
31.000 1040 IAB=M2
32.000 DO 1050 I=1,NBALL
33.000 A(IAB+9)=ABS(A(IAB+9])
34.000 1050 IAB=IADB+14
35.000 C
36.000 RETURN
37.000 END
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APPENDIX B

Normal Contact Compliances for Systematic Packings of Equi-Diameter Elastic Spheres
and Two-Dimensional Random Assemblies of Discs

The majority of tests in the current study were carried out with interparticle stiffnesses defined
by the constant product term k;,r = 3.75 x 10'°, This value is typical of values reported by Strack
and Cundall {1978) during numerical experiments simulating actual assemblies of photo-elastic discs.

Contact stiffnesses k, and k, have been chosen such that kn/k, = 1. According to Mindlin (1949),

this ratio may be considered a lower limit on the ratio of tangential to normal compliances for equi-
diameter elastic spheres in contact. Elastic solutions for spheres in contact can also be invoked to give

guidance in determining the magnitude of interparticle stiffnesses for discs made up of less compressible

materials.

Consider a systematic packing of onded equi-diameter elastic spheres of radius r. Imagine that

within an assembly volume ¥V, there are a very large number of these spheres arranged in a dense
regular array., The number of spheres N in the assembly volume can be calculated as:

3{1- r)'*'/

N =S : (B.1)

where n is the assembly porosity. The contact density m, for the assembly is:

3v(1—n)
- B.2
T 4mr3 (B:2)

Here « is the {average) coordination number for the assembly. Imagine that the assembly is subject

to a uniform hydrostatic stress condition o, where:

o
on=_’;£ k=1,2,3 (B.3)
It is reasonable to assume that under the given stress condition the systematic arrangement of particles

will result in a constant uniform normal contact force f2. From (B.2), (B.3) and (2.17) the normal

stress acting on the system is:

o = 134 (B.4)

The Hertz solution (Deresiewicz, 1958) for a pair of contacting elastic spheres of radius r subject only

to normal contact forces is:

1/3 212/
é:‘%[,}o] [ﬂr];’_l} (B.5)
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Term Ar refers to the change in particle radius and v and E are the Poisson’s ratio and Young’s

Modulus for the sphere material. Substitution of (B.2) and (B.4) into (B.5) and rearrangement leads
to:

X (B.6)
The quantity Ar/r represents the normalized radial deformation for each contacting sphere. Expres-

sion (B.6) can be modified by assuming that the normal stress quantity o, is due only to assembly

self-weight. Letting p represent the sphere material density and H a certain depth of assembly then,

the normalized radial deformations acting at H can be approximated by:

Ar 2 {31\'(1 - uz)pGHr/3
r 3

=2 - (B.7)

Term G is the gravitational constant.

Now let us consider assemblies of spheres in a rhombohedral packing and comprising a variety
of materials. For a rhombohedral array v = 12. Figure B-1 shows the results of calculations using
equation (B.7) and several materials, The plot shows that the deformation in clastic spheres is
dependent on load level and that spheres comprising quartz or steel material may be expected to
exhibit deformations which are up to 7 times that anticipated for similar discs c'onstructed from
photo-elastic materials. Superimposed on the plot is the average value for Ar/r extracted from the
initial dense isotropic assembly which was used for the majority of the numerical experiments carried

out in the current investigation (knr = 3.75 x 101%). For this numerical two-dimensional assembly of

dises, Ar/r was calculated according to:

Ar

— = —l;f—r‘ (B.8)

If we assume that the magnitude of the difference in curves for soft and hard spheres is comparable
to that anticipated for discs comprising photo-elastic and quartz or steel materials then, the lower
straight line with k,r = 3.75 X 10'! may be representative of physical discs with stiffer contacts.

As a result of the foregoing arguments, a limited number of tests were performed with values

kar = 3.75 x 10'! to examine the micromechanical and global response of numerical experiments

simulating assemblies of discs with stiffer contacts.
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Figure B-1 Comparison of Normal Contact Compliances for Systematic Packings
of Equi-Diameter Elastic Spheres and Two-Dimensional Numerical Discs
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